GRE TF/SR discussion on LED replacement light sources

Philipp Plathner, Walter Schlager, Bart Terburg

March 7, 2023

Bonn, Germany

Content

- (1) Starting point and reference
 - What has been discussed in GRE so far?
- (2) Potential ways forward
 - UN approval process
 - National approval process

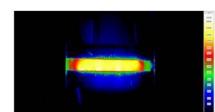
(3) Technical background – Photometrical tutorial

Content

(1) Starting point and reference

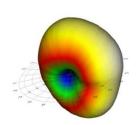
• What has been discussed in GRE so far?

(2) Potential ways forward


- UN approval process
- National approval process

(3) Technical background - Photometrical tutorial

UN R37 approval full photometric equivalence according to guideline (GRE-83-15)



Example 1: Signalling light source C5W (low power)

Near field: filament-like

Far field: filament-like

• PRO's

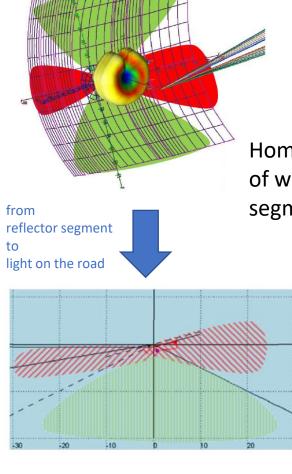
- complete set of light source specifications based on "full equivalence" to incandescent technology
 - Possible for 5W types with today LED technology
 - Possible for 10W and 20W types in near / mid future
- Leads to same photometric performance in the application
- No need for testing in the luminaire (i.e. no need for positive list)
- CON's
 - none

Full equivalence achievable – maintain as-is

SO

GRE87

.⊆


discussed

been

What has

UN R37 approval full photometric equivalence according to guideline (GRE-83-15)

Example 2: Road illumination light source H7 (high flux)

Far field: filament-like

Homogeneous illumination of whole reflector (green and red segments)

- PRO's
 - complete set of light source specifications based on "full equivalence" to incandescent technology
 - But not technically feasible today for high flux categories
 - It would ...
 - lead to same beam performance
 - mean no headlamp testing, no positive list needed
- CON's
 - Full equivalence (= emulation of filament) would not improve the beam performance, i.e. advantages of LED technology not utilised

<u>full-equivalence solutions not feasible for high flux categories</u> with today's LED technology

far?

SO

GRE87

.⊆

discussed

been

What has

Technology neutral full equivalence

LEDr LABORATORY PROTOTYPE with full photometric equivalence

Filament bulb acc. to R37

* Besides the color temperature

CON's

Full equivalence (= emulation of filament) does show the same beam performance, i.e. advantages of LED technology not utilised

- Same photometric values
- Only change of colour temperature

Excerpt from GRE-87 report

• Section 15 (copied and emphasis added):

The expert from IEC analysed the approval process of LED replacement light sources according to UN Regulation No. 37 (GRE-87-02), based on the full photometric equivalence according to the guidelines (GRE-83-15). According to him, fullequivalence solutions were not feasible for high flux categories with the today's LED technology. As a consequence, some countries were issuing national approvals deviating from the full photometric equivalence, based on extensive testing (in headlamps and vehicles) for limited light source specifications and resulting in a positive list for particular vehicle models. *GRE stressed the advantages of harmonization at the United Nations level* and noted that *several contracting parties were in favour of cautious re-evaluation of the equivalence criteria* for LED replacement light sources. *GRE invited IEC to start this work as a new activity of the Task Force on Substitutes and Retrofits (TF SR) in cooperation with those contracting parties*.

• Target of discussion in this Task Force:

 Create foundation for a converging discussion to achieve LEDr unification in all UNECE countries

Content

(1) Starting point and reference• What has been discussed in GRE so far?

(2) Potential ways forward

- UN approval process
- National approval process

(3) Technical background - Photometrical tutorial

Potential ways forward for high power LEDr (in R37 / RE5)

- 1 "intelligent equivalence" on light source level (also called "EQ+")
 - Detailed light source specification via emission in two directions
 - Making full use of LED technology benefits
 - Several deviations from "full photometric equivalence"
 - Keeping LEA and contrast requirements (in 2 viewing directions only)
 - Modified far-field emission requirements
 - Valid in all headlamps / vehicles
 - No need to consider mis-use
 - Not used in any country so far

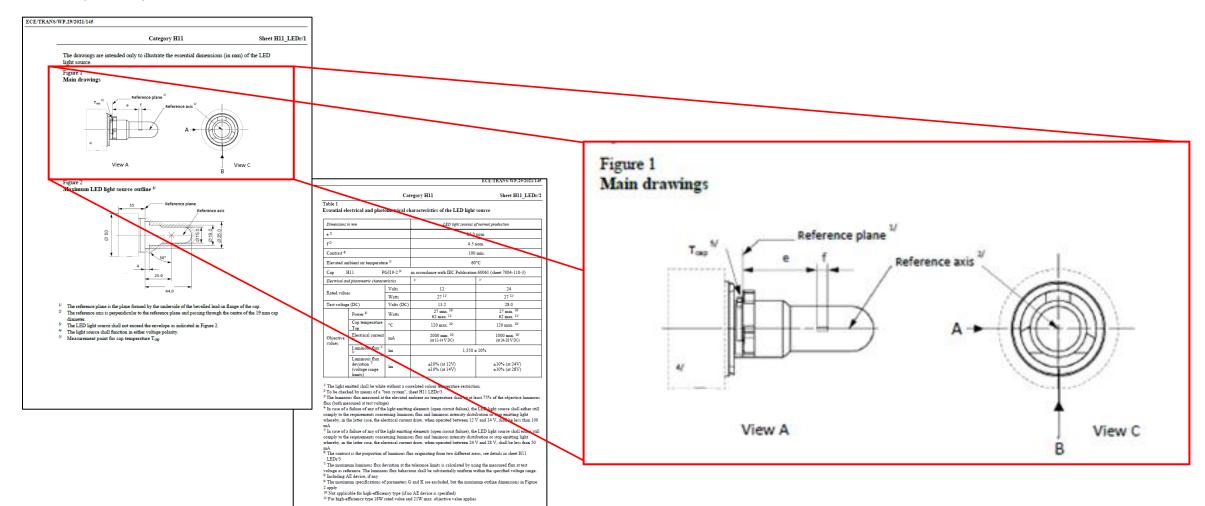
2 – "application-level equivalence" (also called "positive list approach")

- Very limited requirements on light source level
- Making full use of LED technology benefits
- Confirmation of UN compliant photometry in the application by measurement
- Valid in tested vehicles / headlamps *
- Already accepted by several contracting parties (via national type approval)
 - Germany, and some countries accepting:
 - Austria
 - Czech Republic
 - Croatia
 - Slovenija
 - France
 - South Korea

* Mis-use can be addressed via "special measures" to prevent glare , to be discussed further

Potential ways forward for high power LEDr (in R37 / RE5)

- 1 "intelligent equivalence" on light source level (also called "EQ+")
 - Detailed light source specification via emission in two directions
 - Making full use of LED technology benefits
 - Several deviations from "full photometric equivalence"
 - Keeping LEA and contrast requirements (in 2 viewing directions only)
 - Modified far-field emission requirements
 - Valid in all headlamps / vehicles
 - No need to consider mis-use
 - Not used in any country so far


- 2 "application-level equivalence" (also called "positive list approach")
 - Very limited requirements on light source level
 - Making full use of LED technology benefits
 - Confirmation of UN compliant photometry in the application by measurement
 - Valid in tested vehicles / headlamps *
 - Already accepted by several contracting parties (via national type approval)
 - Germany, and some countries accepting:
 - Austria
 - Czech Republic
 - Croatia
 - Slovenija
 - France
 - South Korea

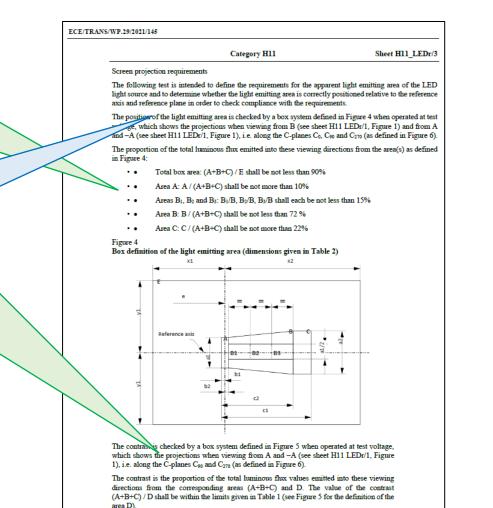
* Mis-use can be addressed via "special measures" to prevent glare , to be discussed further

forward

Potential ways

<u>Sheet H11 LEDr/1 and/2 remain unchanged !</u> WP.29/2021/145

2


<u>Sheet H11 LEDr/3 changes</u> WP.29/2021/145 → Sheet H11_LEDr/3

KEEP all essential characteristics (Table 1) unchanged, especially the box and contrast requirement to avoid glare !

These correspond to the primary (main) directions of emission "A" and "-A"

REMOVE the box requirements in the secondary (third) direction "B"

In order to maintain relationship between meridional "A" and "-A" emission directions INSERT one new parameter: the spacing parameter "z" describing the "thickness"

Sheet H11 LEDr/4 and/5 remain unchanged !

WP.29/2021/145

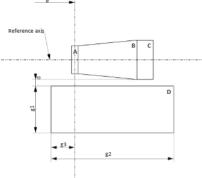


Table 2 Dimensions of the box definitions in Figure 4 and Figure 5

All views (as specified above)	Dimensions in mm	All views (as specified above)	Dimensions in m
al	1.7	xl	25
a2	1.9	x2	19
b1	0.2	yl	12.5
b2	0.2	gl	2.85
el	5.0	g2	7.5
c2	4.0	g3	1.45
d	0.4		

	Category H11	Sheet H11_LEDr/5	
Normalized luminous intensity	distribution		
in the C-planes as described in F	determine the normalized luminous inten Figure 6 when operated at test voltage. The rence plane at distance $e = 25.0$ mm is us	e intersection of the reference axis	
The light source is mounted on a flat plate with the corresponding holder features. The plate is fixe goniometer table by a bracket, so that the reference axis of the light source lines up with one of the axis of the goniometer. The corresponding measurement set-up is described in Figure 6.			
	rded with a standard photo-goniometer. ler to make sure that the detector is loo		
	rformed in C-planes for which the line e. The test points for each plane and pola		
The measured luminous intensity values, normalised to the measured luminous flux of the indivi- source under test, shall be converted to normalised luminous intensity values of a 1000 lm lig. These data shall comply with the limits as defined in Table 3.			
Figure 6 Setup to measure the luminou	is intensity distribution and the definit	ion of C-Planes and angle γ	
А		C = 270°	
	Photo-Detector of Goniometer	C-1	
25,0	C = 0* Reference axis	C = 90°	

C-planes: see CIE publication 70-1987, "The measurement of absolute intensity distributions".

<u>Re-distribute the light</u>...we can give room for good illumination

<u>Sheet H11 LEDr/4 and/5 remain unchanged !</u> WP.29/2021/145 → Sheet H11_LEDr/6

ALLOW more light in the main emission directions ("A" and "–A") and remove intensity requirement for direction "B"

(i.e.: amend Table 3 – Part 2)

This means making full use of LED technology benefits

	Category I	H11	Sheet H	
Table 3 – Test poin	Part 1 t values of normalized intensity (Blacl	k top area)		
	LED light source of normal production			
	Minimum intensity (cd/klm)	Maximum intensity (cd/klm)		
γ	C ₀ , C ₉₀ , C ₁₈₀ , C ₂₇₀	C ₀ , C ₉₀ , C ₁₈₀ , C ₂₇₀		
0°	n/a	10		
10°	n/a	10		
20°	n/a	10		
30°	n/a	10		
	ent grid points the relative luminous int on using the two adjacent grid points.			
addition to Note: The H11 filam Table 3 -	poverification of the grid points given in angular range in Table 3 – Part 1 is eq ent light source specified by γ_3 in sheet i	Table 3 – part 1. uivalent to the black top of its cou H11/3.		
addition to Note: The H11 filam Table 3 -	o verification of the grid points given in angular range in Table 3 – Part 1 is eq ent light source specified by y ₂ in sheet 1 Part 2 t values of normalized intensity (Disto	Table 3 – part 1. uivalent to the black top of its cou H11/3.		
addition to Note: The H11 filam Table 3 -	o verification of the grid points given in angular range in Table 3 – Part 1 is eq ent light source specified by y ₃ in sheet 1 Part 2 t values of normalized intensity (Distor <u>LED light source</u> <u>Minimum intensity (cd:Rim)</u>	Table 3 – part 1. uivalent to the black top of its cou H11/3. prtion free area) of normal production Maximum intensity (cd/kim)		
addition to Note: The H11 filam Table 3 – Test poin	o verification of the grid points given in angular range in Table 3 – Part 1 is eq ent light source specified by y ₃ in sheet 1 Part 2 tvalues of normalized intensity (Disto LED light source Minimum intensity (cd kim) C ₀ , C ₉₀ , C ₂₇₀	Table 3 – part 1. uivalent to the black top of its cou H11/3. of normal production Maximum intenzity (cd/kim) C0, C90, C270		
addition to Note: The H11 filam Table 3 –	o verification of the grid points given in angular range in Table 3 – Part 1 is eq ent light source specified by y ₃ in sheet 1 Part 2 t values of normalized intensity (Distor <u>LED light source</u> <u>Minimum intensity (cd:Rim)</u>	Table 3 – part 1. uivalent to the black top of its cou H11/3. prtion free area) of normal production Maximum intensity (cd/kim)		

The light pattern as described in Table 3 – part 2 (excluding the section between C_{90} and C_{270}) shall be substantially uniform, i.e. in between two adjacent grid points the relative huminous intensity requirement is calculated by linear interpolation using the two adjacent grid points. In case of doubt this may be checked in addition to verification of the grid points given in Table 3 – part 2.

130

130

130

130 130

130

130

130

80

80

80

80

80

80

80

80

80°

90°

100°

110°

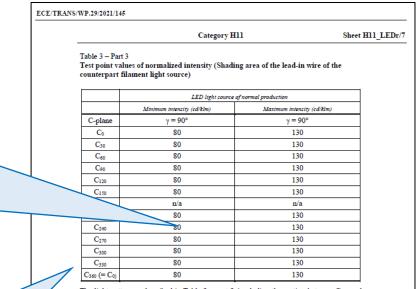
120°

130°

140°

Note: The angular range in Table 3 – Part 2 is equivalent to the distortion free area of its counterpart H11 filament light source specified by γ_2 and γ_1 in sheet H11/3.

"intelligent equivalence"


Re-distribution of light will focus on main emission of light WP.29/2021/145 \rightarrow Sheet H11_LEDr/7

Consequently, LESS light needs to be required in the sagittal emission directions ("B").

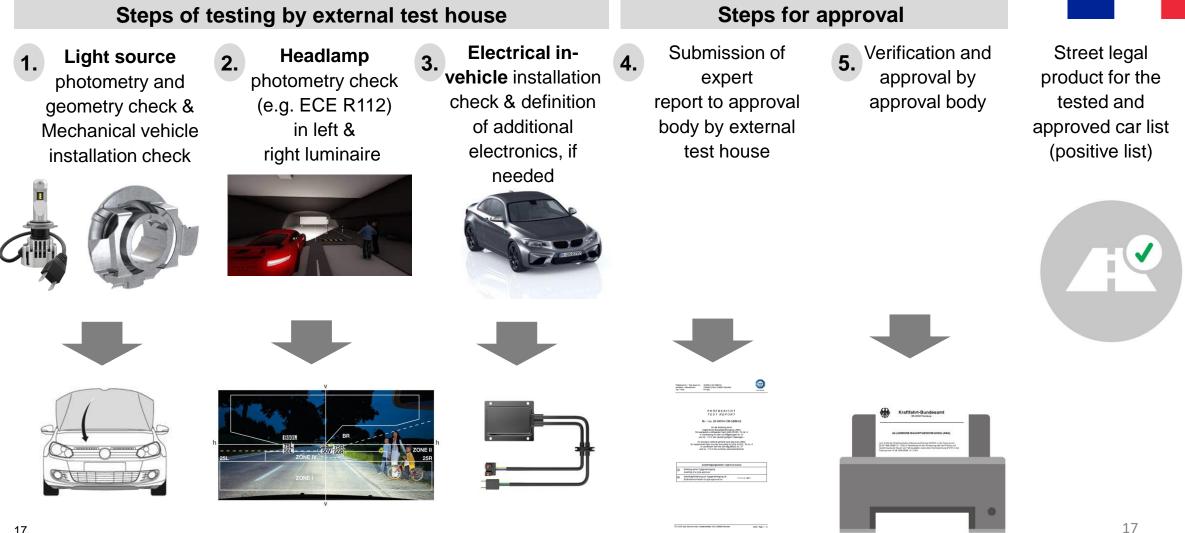
(i.e.: amend Table 3 – Part 3)

This does not compromise safety as the corresponding light of a filament emission profile is not used in safety-critical parts of the beam (this corresponds to foreground light, quite close to the car, where usually there is an abundance of light)

> This is a <u>minor</u> editorial change: A bit less light in the one direction, A bit more in the other.

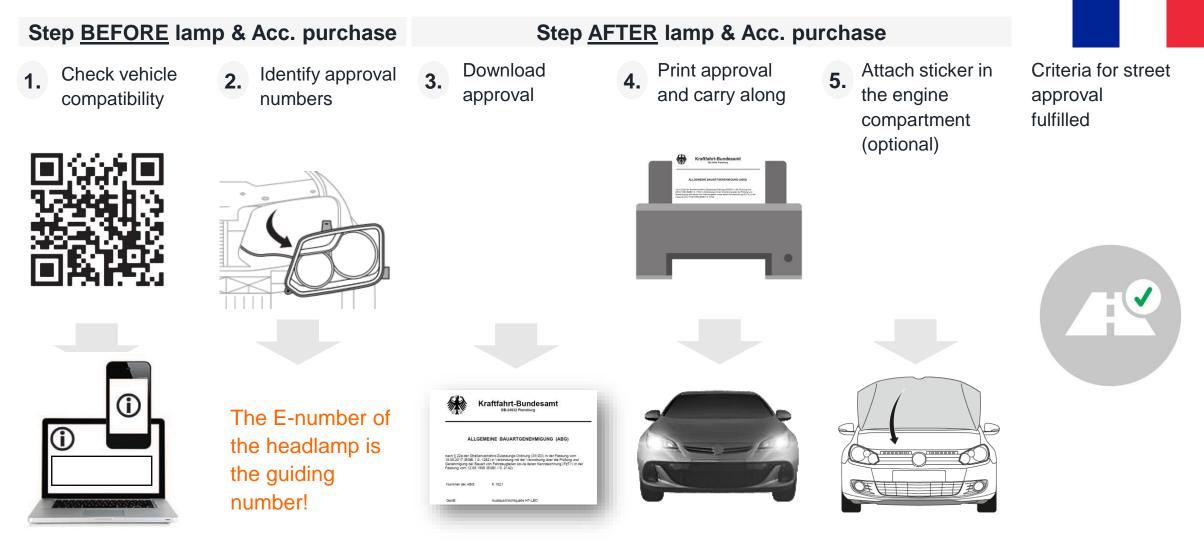
The light pattern as described in Table 3 – part 3 (excluding the section between C_{150} and C_{210}) shall be substantially uniform, i.e. in between two adjacent grid points the relative luminous intensity requirement is calculated by linear interpolation using the two adjacent grid points. In case of doubt this may be checked in addition to verification of the grid points given in Table 3 – part 3.

Note: Due to the shading area created by the lead-in wire of its counterpart H11 filament light source (opposite to the metal-free zone; see Figure 4 on sheet H11/2) there is no requirement in the C_{180} -plane."


Potential ways forward for high power LEDr (in R37 / RE5)

- 1 "intelligent equivalence" on light source level (also called "EQ+")
 - Detailed light source specification via emission in two directions
 - Making full use of LED technology benefits
 - Several deviations from "full photometric equivalence"
 - Keeping LEA and contrast requirements (in 2 viewing directions only)
 - Modified far-field emission requirements
 - Valid in all headlamps / vehicles
 - No need to consider mis-use
 - Not used in any country so far

- 2 "application-level equivalence" (also called "positive list approach")
 - Very limited requirements on light source level
 - Making full use of LED technology benefits
 - Confirmation of UN compliant photometry in the application by measurement
 - Valid in tested vehicles / headlamps *
 - Already accepted by several contracting parties (via national type approval)
 - Germany, and some countries accepting:
 - Austria
 - Czech Republic
 - Croatia
 - Slovenija
 - France
 - South Korea


* Mis-use can be addressed via "special measures" to prevent glare , to be discussed further

Vehicle Specific Approval National Approval Process in Germany and France

Potential ways forward

Vehicle Specific Approval – what does it mean for the consumer?

Some further details on vehicle coverage by "positive list"

K 1821*12

§22a

23

Status Quo Germany

forward

Potential ways

List of vehicles already tested

Example: Page 23 of vehicle list for *ams OSRAM H7-LED*

Similar lists exit for other light sources covered by "postive list" from ams OSRAM (H4-LED) and Lumileds (H7-LED and H4-LED)

 Prüfbericht Nr. / Test report No.:
 20-00014-CM-GBM-12

 Hersteller / Manufacturer:
 OSRAM GmbH, D-80807 München

 Typ / Type:
 H7-LED

ANLAGE 1/12V ENCLOSURE 1/12V

Verwendungsbereich / Application range

				Verbaut in folgende	en Fahrzeugen / Installed in the fo	ollowing vehicles:	
Lfd. Nr. Fahr- zeug	Scheinwerfer- Genehmigung Nr.	Variante Austausch Lichtquelle	Auflagen / Hinweise	Hersteller	Fahrzeugtyp (Genehmigungsnr.)	Handelsbezeichnung (EU-Fahrzeugklasse)	Abblendlicht (A) / Fernlicht (F); [FK]*
No. of vehicle	Headlamp approval no.	Variant replacement light sources	Require- ments I Remarks	Manufacturer	Vehicle type (no. of homologation)	Trade name (EU vehicle class)	passing-beam (A) driving-beam (F); [FK]*)
128)	E1 2538	100	1)	RENAULT (F)	Z (e2*2001/116*0373*)	Megane (M1)	A
156)	E1 3674	100	1)6)	1	Z (e2*2001/116*0373*)	Megane (M1)	A / F [17,5]
75)	E9 16479	100	1)	SEAT (E)	KJ (e9*2007/46*3134*)	lbiza (M1) / Arona (M1)	A
149) 150)	E1 2853	1IF ww. / or 1IG	2)		7N (e1*2007/46*0402*) 7N (e1*2007/46*0435*)	Alhambra (M1) Alhambra (N1)	A
165)	E9 14198	100	1)	1	FP (e9*2007/46*6394*)	Ateca (M1)	A/F
13)	E1 3340	100 10B ww. / or 10G	1)	SKODA (CZ)	5E (e11*2007/46*0243*)	Octavia (M1)	A
102)	E1 4337	100	1)5)	1	5E (e11*2007/46*0243*)	Octavia (M1)	A
103)					5E (e11*2007/46*0244*)	Octavia (N1)	
143)	1				5E (e8*2007/46*0318*)	Octavia (M1)	
142)	E8 7375	1B0	1)	1	3T (e8*2007/46*0317*)	SUPERB (M1)	A
201)	E8 8081	1B0	1)6)	1	AA (e13*2007/46*1169*)	Citigo (M1)	A / F [20]

Auto Service

Content

(1) Starting point and reference

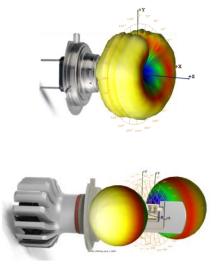
• What has been discussed in GRE so far?

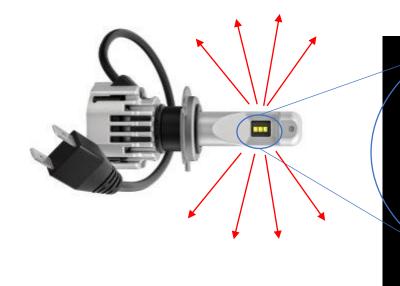
(2) Potential ways forward

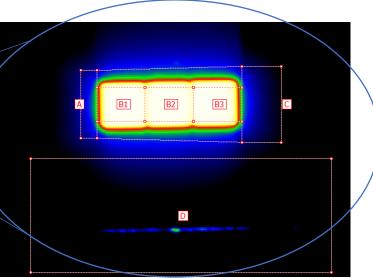
- UN approval process
- National approval process

(3) Technical background - Photometrical tutorial

Currently regulated category and nationally approved products Existing H11-LEDr in R.E 5 and H7_LED with ABG


Key elements discriminating the light source specification

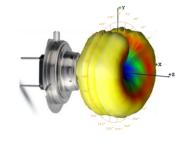

<u>far field</u> -> normalized intensity distribution

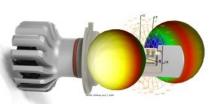

<u>near field</u> -> box and contrast requirements

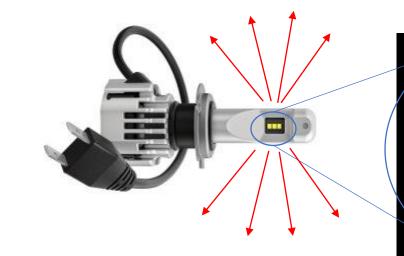
In which direction is the light emitted?

Where does the light come from?

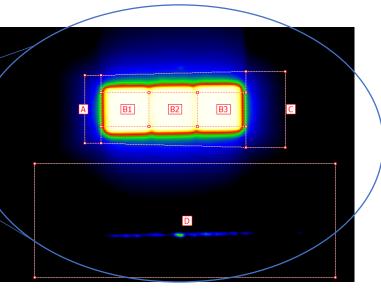
Currently regulated category and nationally approved products existing H11-LEDr in R.E 5 and H7_LED with ABG


Key elements discriminating the light source specification and PROPOSED amendments to H11_LEDr

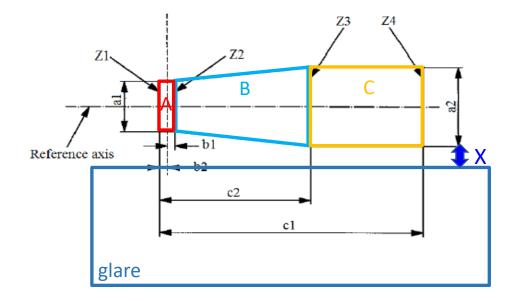

<u>far field</u> -> normalized intensity distribution


<u>near field</u> -> box and contrast requirements

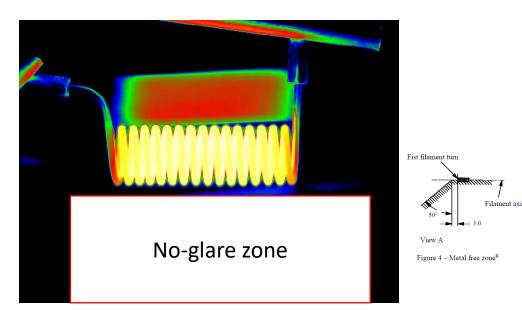
PROPOSAL: allow far-field emission characteristic of two LEDs with Lambertian radiation pattern

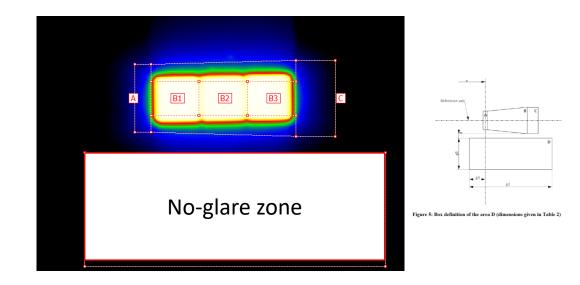

PROPOSAL: same LEA as "full-equivalent" But only from view "A" and "-A"

PROPOSAL: add maximum distance between two light emitting surfaces



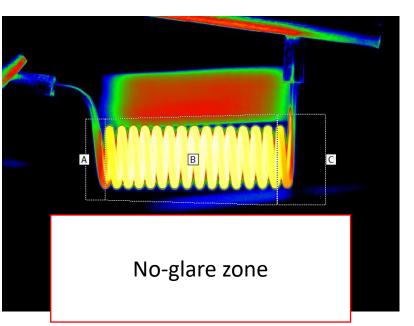
How to maintain glare control

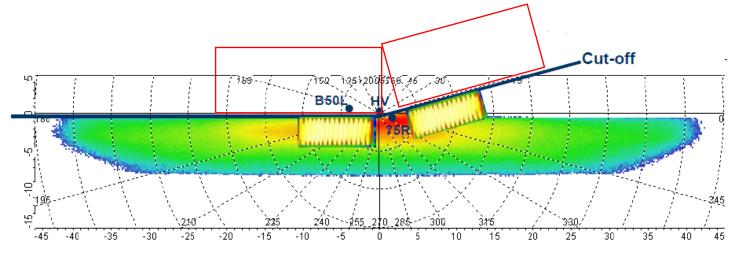

Contrast

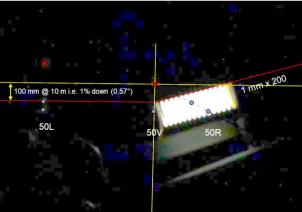

ensuring a sharp cut-off (and controlling the glare)

- Already adressed by full equivalance in R37 today
- <u>Maintain</u> in intelligent equivalence approach

Contrast ensuring a sharp cut-off (and controlling the glare)

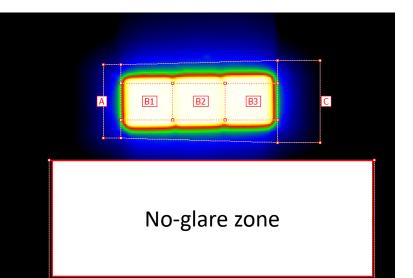

halogen performance

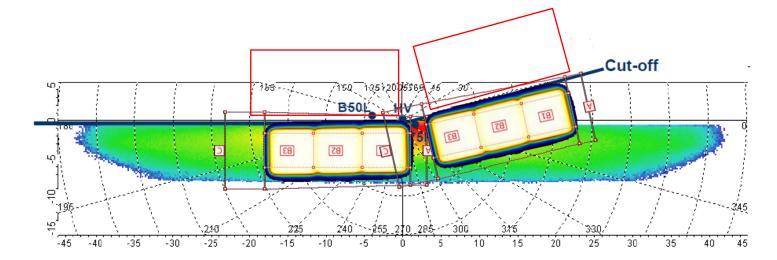



LEDr performance

- already part of R37 today (full equivalence)
- <u>Maintain</u> in intelligent equivalence approach

How does glare control work Halogen and LEDr comparison

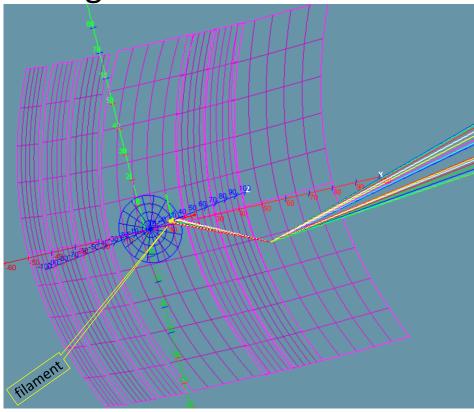


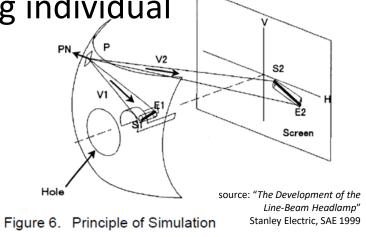


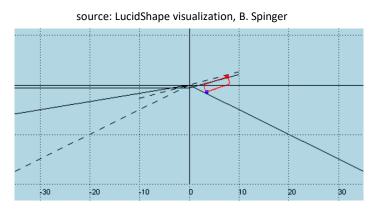
No glare zone:

Realised for filament lamps by a defined geometry ("metal free zone" and "out-of-center" position)

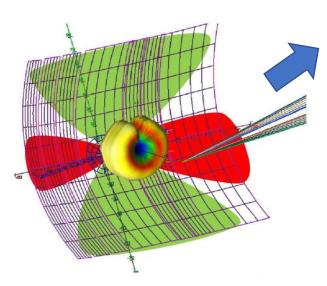
How does glare control work Halogen and LEDr comparison

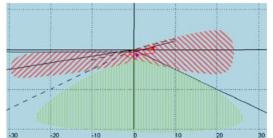


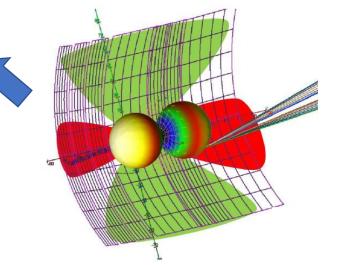

No glare zone: Realised for LEDr by a constrast requirement (luminance measurement)


 Already adressed by full equivalence in R37 today

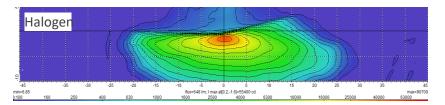
Beam shaping in a filament reflector headlamp


 Beam on wall / street created by projecting individual filament images via reflector elements

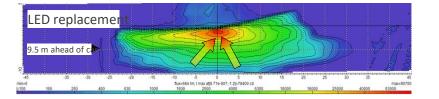




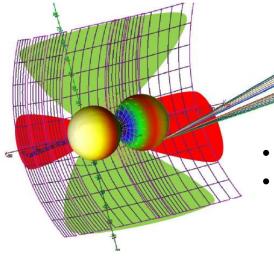
Side-by-side Halogen and Intelligent Equivalent LEDr Beams on 25 m screen

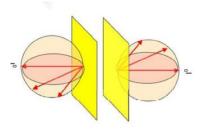


Illuminated reflector segment and corresponding light on the road

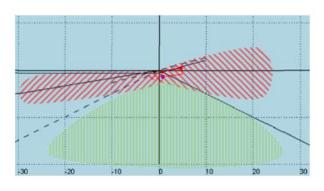


Both light sources 1350 lm

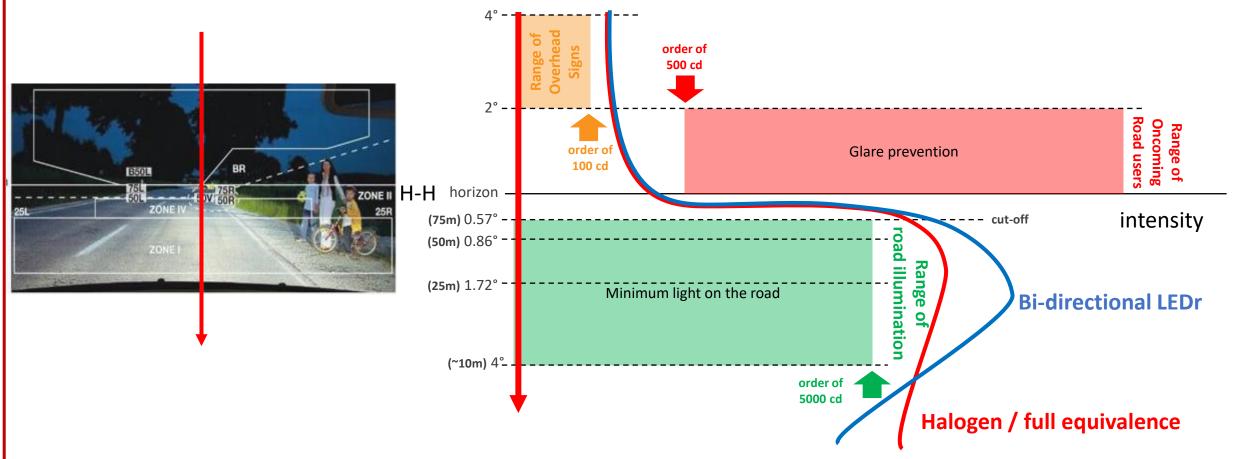

100 cd/klm in red and green direction



170 cd/klm in "red" direction < 80 cd /klm in "green" direction


National approvals (Germany, France, Austria ...) Deviating from full photometric equivalence

- Less light in green segments
- More light in red segments


Illuminated reflector segment and corresponding light on the road

- Methodology
 - Extensive testing (in headlamps and vehicles)
 - Limited light source specifications
 - Resulting in positive list
- PRO's
 - Enabling legalization of safe LEDr, supporting market surveillance
 - Increased beam performance in many tested headlamps
 - Technically feasible with today LED technology
- CON's
 - Incompatible with some headlamps / vehicles
 - Mis-use may lead to non-compliant beams
 - High effort for industry and approval authorities to maintain the positive list
 - Country-specific approval processes, limited mutual recognition
 - Not yet possible in most countries

Summary

