UN R134 Material Compatibility

Chris San Marchi

February 2023

Background

- GTR13 material requirements were not included in Part 2 since not all CPs require them in their national legislation
- Test methods for evaluating material compatibility (metals) are included in Part 1, Section M
 - Fatigue life test, Slow strain rate tensile test
 - Humid gas stress corrosion test
- EC 79 (2009)/EU 406 material tests have sunset but included in [EU]2021/535 (Section F)

What is material compatibility?

- There is no general definition of 'compatible'. Compatibility must be defined on a case-by-case basis and is determined by clearly defined requirements for a specific application (or applications).
- All of the materials of interest are susceptible to hydrogen embrittlement; thus, compatibility is a question of the requirements.
 - For example, Annex 8 effectively defines compatibility as no failure at 100,000 cycles (or 200,000 cycles). In contrast, materials compatibility for transportable cylinders (ISO 11114-4) is defined with fracture criteria. These criteria are not interchangeable (hence ISO 11114-4 should not be used for vehicle components).
- It is important to note also that materials for gas cylinders (Cr-Mo steel) and materials for vehicles components (316 and similar alloys) are all degraded in gaseous hydrogen environments.
- To reiterate, compatibility is not defined by whether the material is degraded (they all are degraded more or less). Compatibility is defined by whether the material meets the intended service.

What is the goal?

<u>Goal</u>: Establish testing metrics to show components are safe for hydrogen service. This can be achieved in (at least) two ways:

- 1. Demonstrate that the <u>material</u> is compatible with hydrogen for the design constraints of the component.
- 2. Demonstrate that the <u>component</u> does not fail under the 'worst-case' service environment defined by the requirements of the application.
- >> Neither test can certify the material for <u>any</u> hydrogen service.

The two evaluation methods are not the same, **but both can be used to achieve the same goal** with proper definition.

How can goals be met?

	Two	possible options	UN R134 (OICA Proposal)
	1.	Demonstrate that the <u>material</u> is compatible with hydrogen for the design constraints of the component.	 Annex 8 [perform <u>material tests</u> or show acceptable published papers, standards, or technical reports demonstrating compliance]
<u>(</u>	<u>OR</u>		<u>OR</u>
	2.	Demonstrate that the <u>component</u> does not fail under the 'worst-case' service environment defined by the requirements of the application.	 Cycle test the <u>component</u> using gaseous hydrogen without failure [2x number of required cycles*]

* Recognizing that the required cycles are equivalent to the life of the component, 2x is therefore represents a 2x safety factor on component lifetime

Understanding results

What is the materials test appropriate for?

- The materials test does <u>not</u> demonstrate the material is acceptable for <u>any</u> hydrogen service
- The materials test demonstrates performance of the *material* within very specific constraints.
- This material test method <u>does not guarantee the infinite life of components</u>. It can only show that the material has 'infinite life' for a specific maximum stress.

What is the component test appropriate for?

- The component test is an acceptance test for the *component* within very specific constraints.
- A component test assesses the performance of the component <u>and only the component in the</u> <u>specific configuration and service environment</u> of the component test.
- BUT a properly-defined component test demonstrates that <u>the design (including materials) is</u> <u>appropriate</u> for conservative test conditions and therefore is a reasonable way to 'accept' the component (within the constraint of the test conditions).

OICA's proposal

- 6.1(a) Pressure cycling test for TPRD :
 - ✓ Total 15,000 cycles
 - (including 10,000 cycles at 20°C, 2MPa to 125%NWP)
- 6.2(c) Extreme temperature pressure cycling test for Check valve, Shut-off valve :
 - ✓ Total 15,000 cycles for Check valve (including 13,500 cycles at 20℃, 100%NWP)
 - ✓ Total 50,000 cycles for Shut-off valve (including 45,000 cycles at 20℃, 100%NWP)

Big difference between both number of cycles

The material compatibility test in draft UN R134, Annex 8 Part 1

 ✓ Option 1) Notched fatigue life test : 100,000 cycles at 20°C
 ✓ Option 2) SSRT test : Yield strength > 0.80 yield strength in air
 @The strain rate ≤ 5 x 10⁻⁵ s⁻¹ at -45°C
 Smooth fatigue life test : 200,000 cycles at 20°C

Differences between materials and component tests

Materials test

- Goal show the material has essentially infinite life for typical design stress
- Fatigue life of a conventional materials fatigue coupon > 100,000+ cycles to failure.
 - In gaseous hydrogen, at pressure > maximum service pressure (i.e., 1.25 x NWP)
 - Design stress = 1/3 tensile strength at RT

Component test

- Goal show the component exceeds the required design life
- Pressure cycling of component: cycles > 2x intended life of the component (15,000+ cycles)
 - Simulated hydrogen service environment representing essentially full pressure cycles
- The goals of these two tests are different
 - The materials test shows essentially infinite life
 - o greater 'safety' factor accounts for design constraints that are difficult to characterize (e.g., stress concentrations)
 - The <u>component test</u> shows conservative life (2x intended service)
 - smaller 'safety' factor is acceptable because there are no assumptions about stress (i.e., design unknowns are captured)