

SAE J2982 Zero Emission Motorcycle (ZEM) Range Testing

58th EPPR Informal Working Group April 12, 2023

Background

- Range is an important metric in measuring the performance of a zero-emission motorcycle (ZEM)
- CARB is developing a credit program to help accelerate adoption of ZEMs
 - Credits will be awarded based, in part, on total range. Therefore, it is critical to have an accurate and repeatable test to quantify total range.
- SAE J2982 *Riding Range Test Procedure for On-Highway Electric Motorcycles* is a procedure for determining the range of ZEMs.
- CARB staff tested three ZEMs following J2982 to gain understanding of what is involved in ZEM range testing and help define criteria of the proposed ZEM regulation.
 - Results may also be useful for development of international ZEM range testing procedures

Testing

- J2982 Involves selecting a drive-cycle, performing a charge/soak for 6-36 hours, and running the ZEM on a dynamometer until it can no long maintain the prescribed drive trace or illuminates a warning light
- 38 tests were run at CARB's Haagen-Smit Laboratory in El Monte, California
 - Testing dates: 01/27/23 03/16/23
- Testing consisted of four different drive cycles, at least two runs each:
 - UDDS (US EPA certification cycle), WMTC (sub-class 2-2, 3-1, 3-2),
 55 mph constant speed, and 70 mph constant speed
- Some drive-cycles were re-run with alternate dynamometer coefficients, vehicle test weights, or drive-cycle variants to observe test variability.

ZEMs Used for Testing

MODEL YEAR	APPROXIMATE ZEM BATTERY CAPACITY		APPROXIMATE MOTOR PEAK POWER	APPROXIMATE VEHICLE WEIGHT
2023 (pre-production)	A - Small	4.5 kWh	13.5 kW (18 hp)	125 kg (275 lb)
2023	B - Medium	7 kWh	34 kW (45.5 hp)	136 kg (300 lb)
2023	C - Large	17 kWh	75.0 kW (100 hp)	250 kg (550 lb)

Dyno Coefficients

- Dynamometer load was set using either EU or US EPA default coefficients based on vehicle mass
 - WMTC = EU coefficients
 - UDDS = US EPA coefficients
 - Constant speed = US EPA coefficients unless otherwise noted
- J2982 also manufacturers may define their own inertia settings based on road load coast-down procedures
 - Coast-down testing was not conducted for this test program, but may be evaluated in a future test program

EU versus US EPA Coefficients

• EU and US EPA have different methods for defining vehicle weight and dyno coefficients, leading to different range results

Example of US EPA Dyno Coefficients 40 CFR § 86.529-98

Example of Euro 5 Dyno Coefficients 134/2014 Appendix V

 Table Ap5-1

 Classification of equivalent inertia mass and running resistance used for L-category vehicles

Reference mass m _{ref} (kg)	Equivalent inertia mass m _i (kg)	Rolling resistance of front wheel a (N)	Aero drag coefficient b $(N/(km/h)^2)$
$165 < m_{ref} \leq 175$	170	15,0	0,0226
$175 < m_{\rm ref} \leq 185$	180	15,8	0,0227

WMTC Sub-Classes

 Different versions of the WMTC are conducted depending on V_{max} and displacement

V _{max}	Sub-class
115 km/h ≤ V _{max} < 130 km/h	2-2
$130 \le V_{max} \le 140 \text{ km/h}$	3-1
V _{max} ≥ 140 km/h	3-2

- Test ZEM A had unknown V_{max}
- Test ZEM B had reported V_{max} of 85 mph (136.8 kph)

Results: ZEM A (small)

All distances in miles									
Drive Cycle	Run1	Run 2	Difference	% Difference					
WMTC (2-2)	51.3	51.1	0.20	0.39%					
WMTC (3-1)	39.2	38.3	0.90	2.32%					
UDDS	53.7	53.7	0.00	0.00%					
55mph	32.7	32.5	0.20	0.61%					
70mph	12.0	11.8	0.20	1.68%					

Results: ZEM B (medium)

All distances in miles									
Drive Cycle	Run 1	Run 2	Difference	% Difference					
WMTC (3-1)	60.0	60.0	0.0	0.00%					
WMTC (3-2)	47.9	NA	NA	NA					
UDDS	91.0	90.8	0.2	0.22%					
55 MPH (210kg)	48.6	46.3	2.3	4.85%					
70 MPH (210kg)	30.7	30.6	0.1	0.33%					
70 MPH (220kg)	31.0	30.3	0.7	2.28%					

Results: ZEM C (large)

All distances in miles									
Drive Cycle	Run 1	Run 2	Difference	% Difference					
WMTC (3-2)	105.7	104.6	1.1	1.05%					
UDDS	178.8	178.3	0.5	0.28%					
55 MPH	105.1	100.9	4.2	4.08%					
70 MPH (330)	70.5	69.4	1.1	1.57%					
70 MPH (320)(EU)	78.1	77.6	0.5	0.64%					

Comparison of Range Using Different Dyno Coefficients

Below are some examples of the differences observed when ZEMs were run with different Dyno Coefficients on the exact same drive-cycle

TEST BIKE	DRIVE CYCLE	EU (210kg)	US EPA (210kg)	Difference	Difference %
ZEM B	70 MPH	32.8 Miles	30.7 Miles	2.1 Miles	6.61%
TEST BIKE	DRIVE CYCLE	EU (320kg)	US EPA (330kg)	Difference	Difference %

Comparison of Range Using Different WMTC Sub-Classes

Below are some examples of the differences observed when ZEMs were run with different WMTC sub-classes

TEST BIKE	WMTC 2-2 (average)	WMTC 3-1 (average)	Difference	Difference %
ZEM A	51.2 miles	38.8 miles	38.8 miles 12.4 miles	
TEST BIKE	WMTC 3-1 (average)	WMTC 3-2	Difference	Difference %
ZEM B	60.0 miles	47.9 miles	12.1 miles	20.17%

Testing Observations

- Run-to-run variability was generally quite low for all bikes tested
- UDDS was the longest test to run due to lower average speeds during testing
 - ZEM C took over 9 hours to complete UDDS testing
- 55 mph and 70 mph constant speed tests were the shortest tests to run
- Dyno coefficients and test cycle variants impact range results
 - Potential for misleading information and customer confusion
- Per SAE J2982, constant speed tests can be used in conjunction with the UDDS to calculate a combined city/highway range known as Highway Commuting Range.

Highway Commuting Range =
$$\frac{1}{\frac{0.5}{\frac{Range}{UDDS} + \frac{0.5}{Range} constant speed}}$$

Tested Highway Commuting Range

Highway Commuting Range (miles) ZEM A			Highwa	ay Commut (miles) ZEM B	ing Range	Highwa	y Commut (miles) ZEM C	ing Range
UDDS	55 MPH	HCR	UDDS	55 MPH	HCR	UDDS	55 MPH	HCR
53.7	32.7	40.6	91.0	48.6	63.4	178.8	105.1	132.4
UDDS	70 MPH	HCR	UDDS	70 MPH	HCR	UDDS	70 MPH	HCR
53.7	12	19.6	91.0	30.7	45.9	178.8	70.5	101.1

WMTC vs J2982 HCR Range

Test Bike	WMTC	HCR	Difference	Difference (%)
ZEM A	39.2 (3-1)	40.6 (@55mph)	1.4	3.63%
7584 D	60 (3-1)	63.4 (@55mph)	-3.4	-5.45%
ZEIVI B	47.9 (3-2)	46.2 (@70mph)	1.7	3.51%
ZEM C	105.7 (3-2)	101.1 (@70mph)	4.6	4.42%

- Good correlation between WMTC 3-1 and HCR UDDS + 55 mph test
- Good correlation between WMTC 3-2 and HCR UDDS + 70 mph test
- Could WMTC and HCR results be used interchangeably?
 - WMTC testing takes less time to complete
 - UDDS + constant speed provides more detailed range information broken down by driving type (City, highway, and combined)

Possible Next Steps

- Test additional ZEMs to confirm results of this test program
- Conduct real world coast-down testing to compare dyno coefficients and corresponding range results with EU and US EPA default values
- Collect real world ZEM range data under a variety of operating conditions to see how it compares with dyno-based range test results

Thank you!

