Proposal from China on discussing k1 and k2 factors of GTR21

2023.5.29

1. Background

■ A review of test results gained from vehicles of three power configurations is shown;

1) Parallel Hybrid Vehicle

A validation test was performed on a **parallel hybrid vehicle** by following the test procedure defined in GTR 21;

Results of the test

The maximum vehicle power occurred at 115 km/h vehicle speed (engine speed 4800 rpm);

The indicated maximum vehicle power from TP1 was 201.6 kW, while the indicated maximum vehicle power from TP2 was 205.3 kW, 1.8% difference.

1. Background

2) Dual Motor Pure Electric Vehicle

A validation test was performed on a **dual-motor pure electric vehicle** by following the test procedure defined in GTR 21;

Vehicle information	The rated front motor power : 120 kW (GB/T 18488) The rated rear motor power : 150 kW (GB/T 18488)	
Reference point	Reference points R1,R2 shown in Figure	
Test procedure 1	1.The Voltage, current, obtained according to power analyzer and onboard CAN data; 2.The electrical energy conversion efficiency (K1): 89%(front),93%(rear) (tested according to GB/T 18488)	$U_{\underline{1}},I_{\underline{1}}$ $U_{\underline{2}},I_{\underline{2}}$
Test procedure 2	1.The speed and torque on wheel-side obtained from dynamometer reading; 2.The mechanical energy conversion efficiency (K2): 99% (estimated value).	κζ ₍₂₎

Results of the test

The maximum vehicle power occurred at 87 km/h vehicle speed;

The indicated maximum vehicle power from TP1 was 242 kW, while the indicated maximum vehicle power from TP2 was 235 kW, 2.9% difference.

1. Background

3) Range Extending Hybrid Vehicle (Series Type)

■ A validation test was performed on range extending hybrid vehicle (series type) by following the test procedure defined in GTR 21;

Vehicle information	The rated engine power : 66 kW (GB/T 17692,equivalent to ECE R85/00) The rated motor power : 160 kW (GB/T 18488)
Reference point	Reference points R1,R2 shown in Figure
Test procedure 1	1.The Voltage, current, obtained according to power analyzer and onboard CAN data; 2.The electrical energy conversion efficiency (K1): 90% (tested according to GB/T 18488)
Test procedure 2	Not applicable

Results of the test

The maximum vehicle power occurred at 73 km/h vehicle speed (engine speed 1950 rpm);

The indicated maximum vehicle power from TP1 was 135 kW (2% discrepancy compared to simulation).

Issue: K1,K2 Determination for highly integrated Electric Drive System (EDS)

1) Influence of K1,K2 on the accuracy of Power Determination

■ Taking the parallel hybrid vehicle as an example, every 0.5% change in K1 has the following impact on the test results.

Max Battery Power minus 1kW (kW)	K1	R2 (kW)	R1 (kW)	R1+R2 (kW)
	0.94	82.72		200.72
	0.945	83.16	118	201.16
88	0.95	83.6		201.6
	0.955	84.04		202.04
	0.96	84.48		202.48

Results from TP1 parallel hybrid vehicle

■ Similarly for K2, every 0.5% change in K2 has the following impact on the test results.

Results from TP2 parallel hybrid vehicle

Dynamometer reading power (kW)	К2	R1+R2 (kW)
	0.89	207.5
	0.895	206.4
184.7	0.9	205.2
	0.905	204.1
	0.91	203.0

Conclusion: A 1% variation in K1,k2 yields a 0.9-2.3 kW variation in indicated power.

Issue: K1,K2 Determination for highly integrated Electric Drive System (EDS)

2) Difficulty of directly measuring K1,K2

- Figures below reveal three different types of Electric Driving System (EDS) at different integration level ;
 - ✓ Type 1: It is practically easy to measure K1, some dedicated mounting needed;
 - Y Type 2: For water cooled EDS (no fluid flows between motor and reducer/gearbox, the complexity of the dedicated mounting increases, but still OK to conduct experiment;
 - ✓ Type 3: For oil cooled EDS, oil flows between motor and speed reducer/gearbox, which makes it difficult to measure K1.
- Similar to K1, the determination of K2 would experience the same difficulty for highly integrated EDS;

<u>Type2: 7 in 1 (water cooled)</u>

Type3: 7 in 1 (oil cooled)

oil flows between motor and speed reducer(cannot separate)

Issue: K1,K2 Determination for highly integrated Electric Drive System (EDS)

3) Possible Solution – Adopting CAN data

- A 7 in 1 (water cooled) EDS has been selected to conduct a comparison: 1) tested on testbed with external transducers; 2) CAN data applied;
- As can be seen, a discrepancy in efficiency (K1) is 0.44% occurred;
- Noted: the accuracy of the CAN data to be requested.

Current	Voltage	Motor speed	Torque	Efficiency (K1)
457.3	296.5	6598	176.6	0.900

Testbed Data

<u>CAN Data</u>

Current	Voltage	Motor speed	Torque	Efficiency (K1)
458.2	296.4	6598	176.1	0.896

excluding speed reducer

Motor System Testbed

Issue: K1,K2 Determination for highly integrated Electric Drive System (EDS)

- 3) Possible Solution Adopting assembly efficiency instead
- A comparison of indicated power based on K1 from either assembly (motor, invertor and speed reducer) or motor system (motor and invertor):
 1.2% difference;
- Noted: This approach is only valid for TP1 when K1 is needed.

Results from TP1 parallel hybrid vehicle

7 in 1 (water cooled) EDS	Max Battery Power minus 1kW (kW)	K1	R2 (kW)	R1 (kW)	R1+R2 (kW)
assembly	88	92.2	81.1	118	199.1
motor system	88	95	83.6	118	201.6

<u>Assembly Test</u>

Motor System

Issue: K1,K2 Determination for highly integrated Electric Drive System (EDS)

4) Suggestion

- If it is not convenient (still possible) to implement external transducers, CAN data can be used to read the actual power; however, the manufacturer needs to supply a validation report showing the comparison of testbed results and CAN data;
- For oil cooled highly integrated EDS where it is impossible to directly acquire data via external transducers, the efficiency of the assembly can be used instead.