

ETRTO proposal for R117 C2 noise temperature correction update

IWGMU May. 2023

Agenda

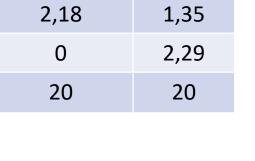
- 1 Recap R117 C1 temperature correction update
- 2 Temperature sensitivity of C2 3PMSF and non 3PMSF tyres
- 3 Next steps

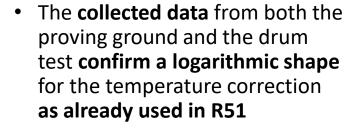
16 May 2023 2

Verifying and updating the R117 C1 temperature correction

- In general, the available data of R117 measurements with the same tyres at a wide temperature range is very limited and often of a poor correlation between the temperature and the measured rolling noise (e.g., $R^2 < 0.5$)
- To improve this situation ETRTO performed 2 activities in parallel:

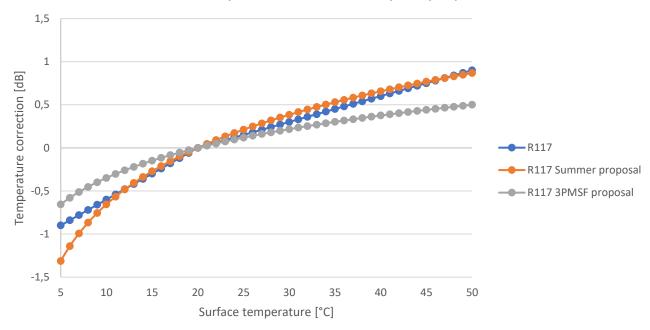
• Proving ground investigation with a high effort to achieve a goal of $R^2 > 0.7$ for the correlation between temperature and tyre rolling noise


 Experimental drum investigation to exclude as many uncertainties as possible



Proposal for R117 C1 temperature correction update

$$L_{corr} = -K1 \times LOG \left(\frac{\vartheta_{ref} + K2}{\vartheta_{test} + K2} \right)$$


	Non-3PMSF	3PMSF
K1	2,18	1,35
K2	0	2,29
ϑ_{ref}	20	20

ETRTO proposal for R117 C1 tyres, based on the collected data:

- **NORMAL TYRES:** the logarithmic shape shall be introduced in R117, by updating the current correction equation based on surface temperature
- **3PMSF TYRES:** introducing a dedicated logarithmic shape temperature **correction equation,** to better represent the low temperature sensitivity of 3PMSF compounds

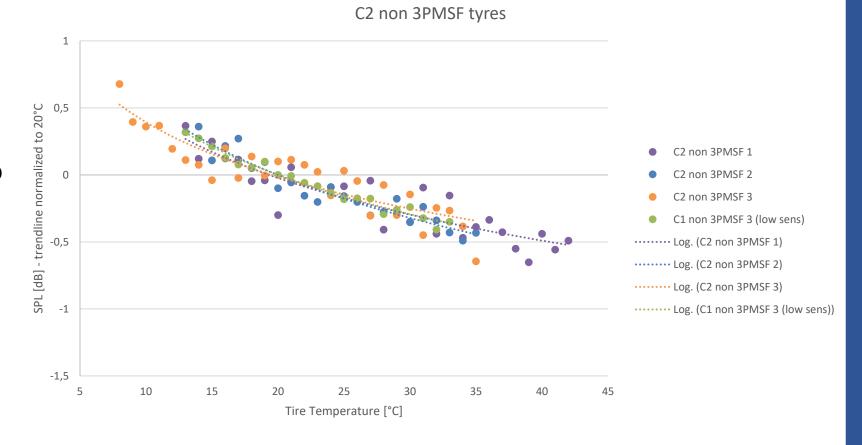
Agenda

- 1 Recap R117 C1 temperature correction update
- 2 Temperature sensitivity of C2 3PMSF and non 3PMSF tyres
- 3 Next steps

16 May 2023

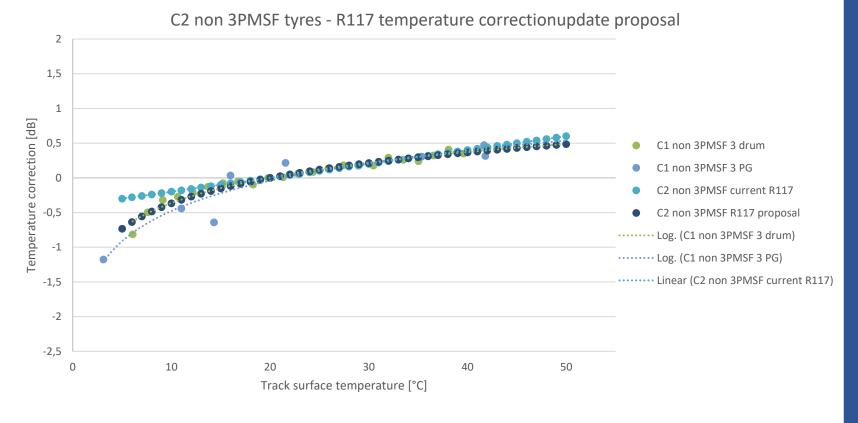
Verifying and updating the R117 C2 temperature correction

• In general, the available data of R117 measurements with the same tyres at a wide temperature range is very limited and often of a poor correlation between the temperature and the measured rolling noise (e.g., $R^2 < 0.5$)


 Experimental drum investigation to exclude as many uncertainties as possible

C2 NON 3PMSF - Drum investigation

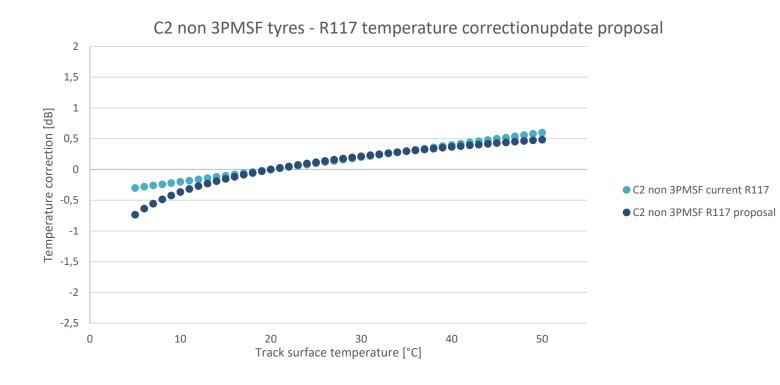
- Three production tyres were tested
- Tyres cooled down to 5° C.
- Mounted at the test stand, using an ISO replica drum surface, measuring:
 - Tyre rolling noise
 - Tyre temperature during the warmup
 - Measurement was run until a steady state tyre temperature was reached



• C2 non 3PMSF tyres show a comparable temperature sensitivity then low temperature sensitive C1 non 3PMSF tyres.

C2 non 3PMSF correction – referencing to C1 results

- The current R117 C2 temperature correction matches above 15°C with the temperature sensitivity of low sensitive C1 tyres.
- To compensate the discrepancy below 15°C an updated C2 non 3PMSF temperature correction is derived based on the results of low sensitive C1 tyres.

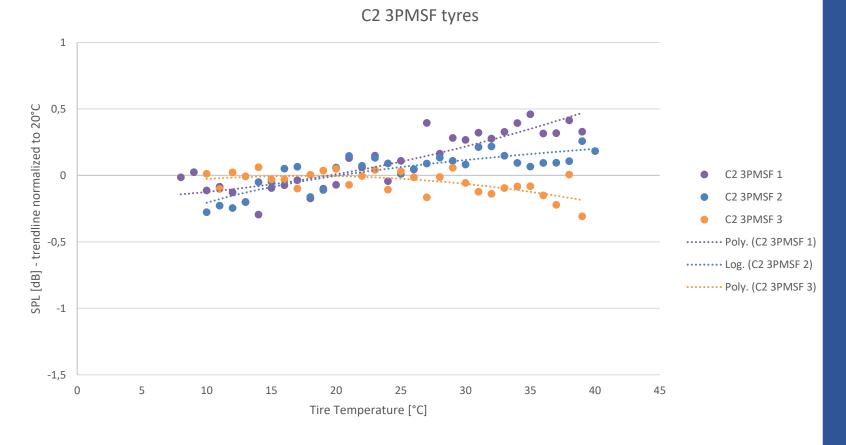


Proposal for R117 C2 non 3PMSF temperature correction update

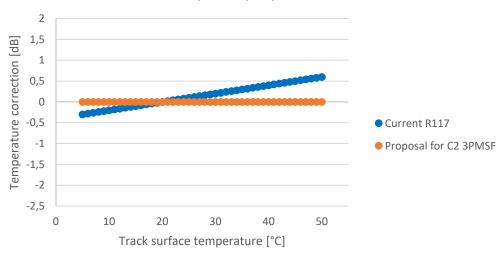
$$L_{corr} = -K1 \times LOG \left(\frac{\vartheta_{ref} + K2}{\vartheta_{test} + K2} \right)$$

	Non 3PMSF
K1	1,22
K2	0
$artheta_{ref}$	20

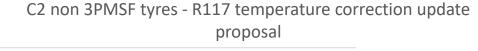
ETRTO proposal for R117 C2 non 3PMSF tyres, based on the collected data:

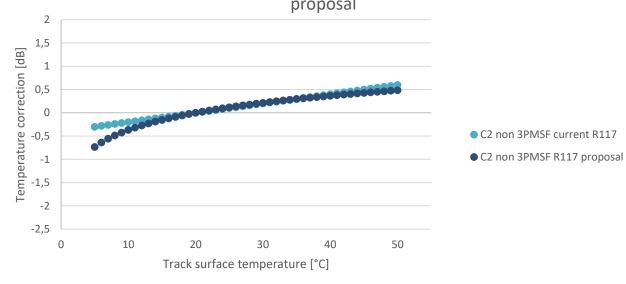

• Introducing a logarithmic shape - temperature correction equation, to better represent the low temperature sensitivity of non 3PMSF C2 tyres

- Three production tyres were tested
- Tyres cooled down to 5° C.
- Mounted at the test stand, using an ISO replica drum surface, measuring:
 - · Tyre rolling noise
 - Tyre temperature during the warmup
 - Measurement was run until a steady state tyre temperature was reached


 C2 3PMSF tyres show such low temperature sensitivity that no temperature correction can be derived.

ETRTO proposal for C2 temperature correction update




C2 3PMSF tyres - R117 temperature correction update proposal

	3PMSF
K1	0
K2	0
ϑ_{ref}	20

Non 3PMSF

	Non 3PMSF
K1	1,22
K2	0
ϑ_{ref}	20

$$L_{corr} = -K1 \times LOG \left(\frac{\vartheta_{ref} + K2}{\vartheta_{test} + K2} \right)$$

Agenda

- 1 Recap R117 C1 temperature correction update
- 2 Temperature sensitivity of C2 3PMSF and non 3PMSF tyres
- 3 Next steps

16 May 2023 12

Next steps

- Ask for support from ISO regarding the observed proving ground variations (track vs. air temperature) and data collection for a discussion in the next revision cycle of ISO 10844.
- Continue the investigations regarding the connection between tire, air and surface temperature.

Thank you!