UTAC'

Tyre Abrasion Study for ACEA Maëlle Dodu – Tyre Expert

GRBP TF TA Session 15

CONTENTS

- Tyre Abrasion Study Overview
- WP1 Literature Review
- WP3 Real Life Testing
- Next Steps

TYRE ABRASION STUDY OVERVIEW

- Scope:
 - Theoretical and experimental study of influencing factors on tyre wear / abrasion.
- Objectives:
 - Review GRBP TF TA tyre abrasion requirements proposal: test method, interdependency evaluations, etc,
 - Quantify differences in tyre wear / abrasion in relation to vehicle type (ICE vs BEV),
 - Quantify possible differences between OE and Aftermarket tyres by testing tyres with different label values.
- Work Packages & Timing:

Work Packages		Timing
WP1	Literature Review	Jun-23 (completed)
WP2	EPREL Tyre Database Analysis	Aug-23 (ongoing)
WP3	Real Life Testing	Aug-23 (ongoing)
WP4	Test Results Analysis	Sept-23
WP5	Presentations to GRBP/GRPE:Interim report:Final report:	GRBP 78 th session GRPE 90 th session / GRBP 79 th session

WP1 – LITERATURE REVIEW - SCOPE

- Tyre abrasion and mileage for:
 - C1, C2 & C3 tyres,
 - Summer & 3PMSF tyres.
- Aspects considered:
 - Driving behaviour influence on tyre wear / abrasion,
 - Vehicle design influence on tyre wear / abrasion,
 - Tyre performances interdependency,
 - Tyre wear / abrasion testing,
 - Tyre & Road Wear Particles (TRWP) emissions.
- Review included, but was not limited to, relevant studies presented in GRBP TF TA.

WP1 – LITERATURE REVIEW - FINDINGS

- Main influencing parameters with regards to tyre wear /abrasion reviewed in terms of:
 - Vehicle design: increased tyre wear expected with BEV vs ICE, due to:
 - Increased weight (current BEV weight estimation: ICE + 20-25%),
 - Higher level of instantaneous torque,
 - Regenerative braking system.
 - Driving conditions: longitudinal and lateral accelerations more critical than speed alone.
 - Road surface,
 - Ambient weather conditions.

WP1 – LITERATURE REVIEW - FINDINGS

- Tyre performances interdependency:
 - Tyre wear / abrasion vs rolling resistance: good level can be achieved for both performances, depending on:
 - Strategy chosen during tyre development,
 - Tyre category considered (ie: eco vs high performance / sport).
 - Tyre wear / abrasion vs rolling noise: good level can be achieved for both performances, depending on:
 - Strategy chosen during tyre development,
 - Tyre category considered (ie: eco vs high performance / sport).
 - Tyre wear / abrasion vs safety: challenging to achieve good level for both performances:
 - Investments required in development and implementation of innovative technical solutions.

(UTAC, TA-03-04 OICA GRBP-75-19-Rev.1)

WP1 – LITERATURE REVIEW - FINDINGS

- TRWP emission:
 - Very complex vs tyre wear / abrasion studies,
 - Testing methodologies: challenges to generate, collect and quantify TRWP over the relevant particles size range in a representative and accurate way,
 - Particle size distribution: increased driving severity leads to increased share of fine and ultrafine particles.
- Tyre wear / abrasion & TRWP information availability:
 - C1 tyre: information available but limited number of studies found on BEV influence on tyre wear / abrasion and tyre performances interdependency,
 - C2 tyre: limited information available,
 - C3 tyre: scarce information available.

WP3 – REAL LIFE TESTING

- Objectives:
 - Quantify differences in tyre wear / abrasion in relation to:
 - Vehicle type: ICE vs BEV,
 - Tyre type: OE vs aftermarket tyres with different label values.
- Vehicles selection:
 - Scope: BEV & ICE vehicles from same model platform,
 - Vehicles: BMW iX1 xDrive (BEV) vs BMW X1 (ICE).
- Tyres selection:
 - Scope: C1 summer tyres,
 - Tyre size: 245/45R19 102 Y,
 - Tyre labels (rolling resistance / wet grip):
 - AA (aftermarket, best label combination available),
 - AB (OE homologated),
 - BA (OE homologated),
 - CA (aftermarket, best-selling),
 - DB (aftermarket, worst label combination available),
 - Tyres tested before tyre wear test to check wet grip and rolling noise label values.

WP3 – REAL LIFE TESTING

Circuit:

- Open road circuit around UTAC Mortefontaine site (Northern France),
- Compatible with BEV range & charging constraints,
- Specifications as close as possible to TADG-ORV Test Method proposal.
- Test Method:
 - 1 double convoy: 3 + 3 vehicles to limit test time & cost,
 - Total running distance: 15,000km (8 weeks),
 - Measurement parameters: tyre tread depth and mass loss,
 - Test procedure as close as possible to TA DG-ORV Test Method proposal.
- Timing:
 - Test start: beginning of July 2023,
 - Test expected end: end of August 2023.

Circuit characteristics			
Length (km)	390		
City (km / %)	59 km / 15 %		
Road (km / %)	195 km / 50 %		
Highway (km / %)	137 km / 35 %		
Average speed (km/h)	93,13		
Standard deviation speed	32		
Standard deviation longi accel (m/s ²	0,68		
Standard deviation lat accel (m/s ²)	0,87		

NEXT STEPS

- WP2 EPREL Tyre Database Analysis:
 - Analysis and report to be completed mid-August 2023.
 - Conclusions to be included in study presentation to GRBP 78th session.
- WP3 Real Life Testing:
 - Testing to be completed end of August 2023.
 - Testing update to be included in study presentation to GRBP 78th session.
- WP4 Test Results Analysis:
 - Analysis to be completed mid-September 2023.
 - Conclusions to be included in study final report presentation to GRPE 90th session / GRBP 79th session.

www.utac.com