

A-LCA-10-03

A-LCA IWG SG2 Discussion item info. share to IWG

2023.Sep.07

Isao Tabushi / JASIC (Japan)

Participants

T7 . N7	T . NT				3.6 1
First Name	Last Name	e-mail	~	v v	Members 🔻
Isao	TABUSHI	isao_tabushi@jp.honda	CP	JP	VV
Koichiro	AIKAWA	koichiro aikawa@jp.honda	NGO	OICA	✓
Johanna	BERLIN	johanna.berlin@volvocars.com	NGO	OICA	✓
Toru	FURUSAWA	toru_furusawa@jp.honda	NGO	OICA	✓
Seunggu	Kang	seunggukang@lucidmotors.com	NGO	AVERE	✓
Emmanuelle	KOBIALKA	emmanuelle.kobialka@renault.com	NGO	OICA	✓
Torsten	KOSMEHL	tkosmehl@ford.com	NGO	OICA	✓
Duc-Nam	LUU	duc-nam.luu@hutchinson.com	NGO	CLEPA	✓
Toshiyuki	MARUNO	toshiyuki_maruno@jp.honda	NGO	OICA	✓
Benedetta	Nucci	nucci@european-aluminium.eu	NGO	European Aluminium	✓
Mac	Ramsdell	mac.ramsdell@srgglobal.com	NGO	CLEPA	✓
Sophie	RICHET	sophie.richet@stellantis.com	NGO	OICA	✓
Tetsuya	SUZUKI	stetsuya@jari.or.jp	CP	JP	✓
Alex	vanGELDEREN	a.vangelderen@etrma.org	NGO	BLIC	✓
Tongzhu	Zhang	zhangtongzhu@catarc.ac.cn	CP	CN	✓
Hongjie	ZHANG	zhanghongjie@catarc.ac.cn	CP	CN	/

First Name	Last Name	e-mail -		•	~	Members 🔻
Paolo	Alburno	p.alburno@clepa.be	NGO	CLEPA		(✔)
Sylvain	ANDRE	sylvain.andre@hutchinson.com	NGO	CLEPA		(✔)
Johann	BACHLER	Johann.Bachler@avl.com	NGO	EGEA		(✔)
Simone	Bambagioni	simone.bambagioni@punchtorino.com	NGO	CLEPA		(✔)
Francois	Broszniowski	francois.broszniowski@valeo.com	NGO	CLEPA		(✔)
Xavier	Chaptal	xchaptal@fiev.fr	NGO	CLEPA		(✔)
Wonjae	Choi	wj choi@ewha.ac.kr	CP	KR		(✔)
Elodie	COLLOT	elodie.collot@utac.com	CP	FR		(✔)
François	CUENOT	francois.cuenot@un.org	UN	UN		(✓)
Funda C.	Ertem-Kappler	fertemkappler@sensata.com	NGO	CLEPA		(✔)
Simone	FACIONI	simone.falcioni@trbe.be	NGO	CLEPA		(✔)
Stephanie	FLITSCH	stephanie.flitsch@avl.com	NGO	EGEA		(√)
Nicolle	Giuliani	nicolle.giuliani@nio.io	NGO	AVERE		(✔)
Werner	HOFEGGER	werner.hofegger@avl.com	NGO	EGEA		(✔)
Dietmar	HOFER	dietmar.hofer@magna.com	NGO	CLEPA		(✔)
Hyeon U	Kim	hyeonu@hyundai.com	CP	KR		(✔)
Kseniia	Lindner	lindnken@schaeffler.com	NGO	CLEPA		(✔)
Zhipeng	LIU	standard@brunp.com.cn	CP	CN		(✔)
Yinghao	LIU	liuyh@baosteel.com	CP	CN		(✔)
Inji	PARK	coolinji@kotsa.or.kr	CP	KR		(√)
Ludovic	Pavani	ludovic.pavani@saint-gobain.com	NGO	CLEPA		(✔)
На	Seunghyun	seunghyun.1.ha@gm.com	NGO	OICA		(✔)
Han Ho	SONG	hhsong@snu.ac.kr	CP	KR		(✔)
Alexander	Spiegel	alexander.spiegel@brose.com	NGO	CLEPA		(✔)
Marc	STEEMAN	marc.steeman@aisin-europe.com	NGO	CLEPA		(√)
Stefan	STILL	Stefan.Still@avl.com	NGO	EGEA		(√)
Moosang	Yu	moosang.yu@gm.com	CP	KR		(√)

Purpose of SG2 activity

Purpose

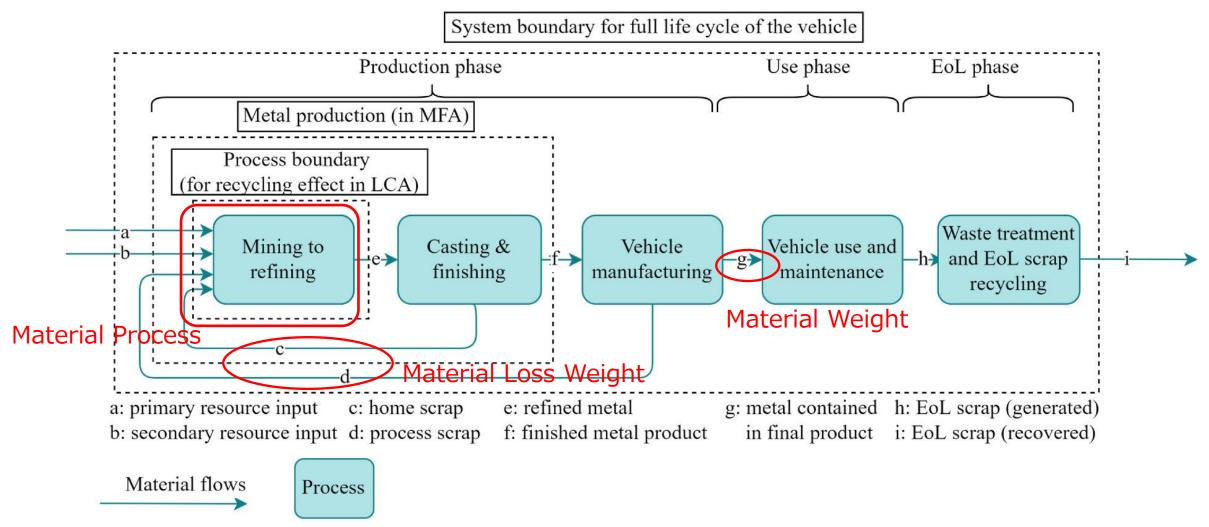
 Set an internationally harmonized material carbon intensity which enables a material technology to evaluate LCA toward carbon neutral

<Point of views>

- Usage of recycled material, yield (or loss) rate
- Development of global data which enables consideration of regional electric power effect.

Discussion item for SG2

- > Definition of Activity data & Intensity Data
- >Primary Data concept (level concept)
- > Definition of Material list for Automotive LCA
- >System scope & boundary
- >How shall we collect data
- >Global & Regional Secondary data handling
- >Secondary data definition/which DB to use (incl. data quality)
- >Verification of data


Overall schedule plan

			20	23			2024						
	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	2Q	3Q	4Q	-
IWG MTG				*									
SG2 Purpose agreement													
Definition of Activity data & Intensity Data		-											
Primary Data concept													
Definition of Material list for Automotive LCA			**										
System scope & boundary													
How shall we collect data									-				
Global & Regional Secondary data handling													
Secondary data definition/which DB to use													
Verification of data													
Drafting													—

Definition of Activity data & Intensity Data

reference: (2)Impact of recycling effect in comparative life cycle assessment for materialsselection - A case study of light-weighting vehicles https://www.sciencedirect.com/science/article/pii/S0959652622009465?via%3Dihub

Primary Data concept (level concept)

Level		Activity Data		Intensity Data		
	Vehicle Wight [kg]	Material Distribution [%]	Scrap Rate of Material [%]	Carbon Intensity of Material Acquisition [kg-CO ₂ e/kg]		
Level1	Primary data	All Secondary data	All Secondary data	All Secondary data		
	Amount of Materia l [k	_	Scrap Rate of Material [%]	Carbon Intensity of Material Acquisition [kg-CO ₂ e/kg]		
Level2	All Prima	ary data	All Secondary data	All Secondary data		
Level2.5	1		Partially Primary data	↑		
Level3	1		All Primary data	↑		
Level3.5	1		↑	Partially Primary data		
Level4	1		↑	All Primary data		

Definition of Material list by VDA

VDA material

VDA	VDA Classification Name					
Classification	VDA Classification Name					
1.1	Steel/cast steel/sintered alloys					
1.1.1	Unalloyed/low alloy steel					
1.1.2	high-alloy steel					
1.2	cast iron					
1.2.1	Gneissic graphite cast iron/ malleable cast iron					
1.2.2	Spheroidal graphite cast iron/Vermular cast iron					
1.2.3	high-alloy cast iron					
2.1	Aluminium / aluminium alloys					
2.1.1	Cast aluminium alloys					
2.1.2	Forged aluminium alloy					
2.2	Magnesium, magnesium alloys					
2.2.1	Cast magnesium alloy					
2.2.2	Forged magnesium alloy					
2.3	Titanium, titanium alloys					
3.1	Copper (e.g. copper in harnesses)					
3.2	copper alloy					
3.3	zinc alloy					
3.4	nickel alloy					
3.5	lead (the metal)					
4.1	Platinum/rhodium					
4.2	Other special metals					

Not enough to show low CO2 material effect by VDA classification

5.1	thermoplastic resin
5.1.a	Thermoplastic resin (containing filler)
5.1.b	Thermoplastic resin (without filler)
5.2	thermoplastic elastomer
5.3	Elastomer/elastomer composites
5.4	thermosetting resin
5.4.1	polyurethane
5.4.2	unsaturated polyester
5.4.3	Other thermosetting resins
5.5	Polymer composites (e.g. laminated trim parts)
5.5.1	Resins in polymer composites.
5.5.2	Fibres in polymer composites (textiles)
6.1	painting material
6.2	Adhesives, sealants
6.3	underseal
7.1	Organic natural materials (e.g. leather)
7.2	Ceramics/glass
7.3	Other composite materials (e.g. friction linings)
8.1	Electronic component materials (e.g. PCBs, displays)
8.2	Electrical component materials
9.1	fuel
9.2	lubricant
9.3	brake fluid
9.4	Coolant/other glycols
9.5	refrigerant
9.6	Washer fluid, battery fluid
9.7	preservative
9.8	Other fuels and replenishers
	Tyre
	lead-acid battery
	Drive battery cell

Vehicle hot spot analysis due to material type

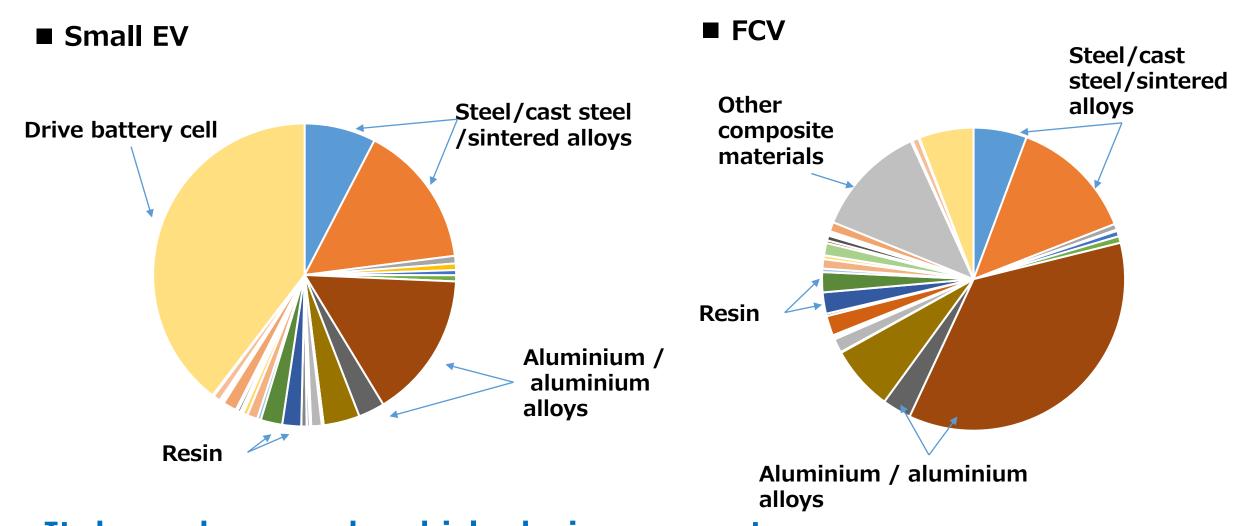
Initial study

<IMDS> ·Parts list ·VDA Mat.Type & Weight

X

·Carbon **Intensity Data** (2011y)JAMA)

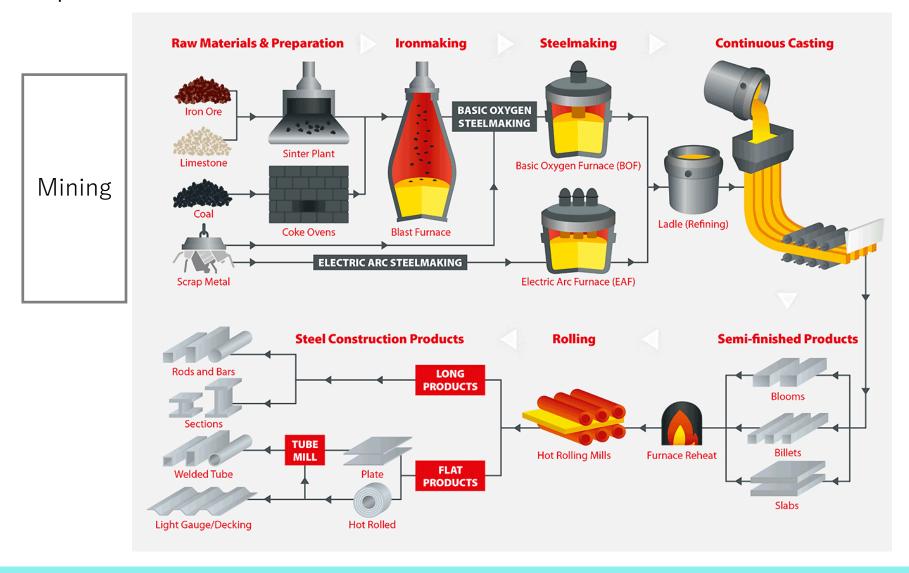
■ Ma	aterial types
١	/DA material definition
1.1	Steel/cast steel/sintered alloys
1.1.1	Unalloyed/low alloy steel
1.1.2	high-alloy steel
1.2	cast iron
1,2,1	Gnoissic graphite cast iron/ malloable
	cast iron
1 2 2	Spheroidal graphite cast iron/Vermular cast iron
1.2.2	iron/Vermular cast iron
1.2.3	high-alloy cast iron
2.1	Aluminium / aluminium alloys
2.1.1	Cast aluminium alloys
2.1.2	Forged aluminium allov
2.2	Magnesium, magnesium alloys
2.2.1	Cast magnesium alloy
2.2.2	Forged magnesium alloy
2.3	Titanium, titanium alloys
3.1	Copper (e.g. copper in harnesses)
3.2	copper alloy
	zinc alloy
	nickel alloy
3.5	lead (the metal)
	Other special metals
	thermoplastic resin
5.1.a	Thermoplastic resin (containing filler)
	Thermoplastic resin (without filler)
	thermoplastic elastomer
5.3	Elastomer/elastomer composites
5.4	thermosetting resin
	polyurethane
5.4.2	unsaturated polyester
5.4.3	Other thermosetting resins
5.5	Polymer composites (e.g. laminated
	tilli parts)
5.5.1	Resins in polymer composites.
	Fibres in polymer composites (textiles)
	painting material
6.2	Adhesives, sealants
	underseal
7.1	
7.2	Ceramics/glass
7.3	Other composite materials (e.g.
	friction linings) Electronic component materials (e.g.
8.1	PCBs, displays)
8.2	Electrical component materials
	fuel
	lubricant
	brake fluid
9.4	Coolant/other glycols
9.5	refrigerant
9.6	Washer fluid, battery fluid
9.7	
	Other fuels and replenishers


■ Pa	ssen	ger d	car/N	1C		■Tru	ck		= [Pas	ssen	ger	car	ICE	/HE	V (b	oattery, tire)
Small CE	Mid FCV	Small EV	Mid HEV	Small 2R	Mid 2R	Small	Small HEV	Large		CE ody	ICE Lead acid battery	ICE Tire (4)	MHEV Body	MHEV Lead acid Battery	MHEV Li ion battery	MHEV Tire (4)	
20.9% 30.0%	5.7% 13.4%	7.6% 15.4%	15.6% 22.4%	0.0% 53.7%	0.0% 44.0%	10.9% 50.9%	11.1% 50.3%	10.1% 51.2%		44.1% 18.2%	0.0% 0.0%	0.0% 14.1%	46.1% 15.1%	0.0% 0.0%	0.0% 0.0%	0.0%	Ctool
0.9%	0.6%	0.8%	1.4%	3.1%	3.2%	1.4%	1.5%	1.0%		0.6%	0.0%	0.0%	0.5%	0.0%	0.0%	0.0%	Steel
0.3%						0.7%		0.5%		1.1%	0.0%	0.0%	1.0%		0.0%	0.0%	
0.9%	0.6%	0.5%	1.1%	0.0%	0.0%	8.2%	8.0%	8.9%		2.2%	0.0%	0.0%	2.0%	0.0%	0.0%	0.0%	
0.4%	0.7%	0.7%	1.6%	2.5%	2.0%	5.3%	5.1%	7.3%		1.3%	0.0%	0.0%	1.2%		0.0%	0.0%	
20.2%		15.6%	24.8%	0.0%		0.10	0.19	0.1%		1 00/	0.0%	0.0%	4.2%		21.4%	0.0%	
2.5%	35.8% 3.1%	15.6% 2.8%	4.9%	17.2%	26.8%	1.19 4.79	1.2% 5.3%	2.9% 6.6%		1.8% 5.4%	0.0%	0.0%	3.2%	0.0%	0.0%	0.0%	Alluminium
3.1%	6.9%	3.9%	3.4%	0.1%	2.8%	5.4%	5.2%	4.6%		0.5%	0.0%	0.0%	0.4%		0.0%	0.0%	Anummum
0.5%	0.0%	0.2%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%		0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
0.0%	0.0%	0.0%		0.0%		0.0%		0.0%		0.0%	0.0%	0.0% 0.0%	0.0%		0.0% 0.0%	0.0%	
0.6%	0.0% 1.5%	0.0% 1.1%	0.0% 1.1%	0.0% 0.7%	0.6%	0.0% 0.6%	0.0% 0.8%	0.0% 0.5%		0.0% 1.2%	0.0%	0.0%	1.7%	0.0%	13.4%	0.0%	
0.1% 0.3%	0.2%	0.2%		0.1%	0.0% 0.5%	0.29		0.3%		0.2% 0.1%	0.0%	0.0% 0.0%	0.3% 0.1%	0.0%	0.0% 0.0%	0.0%	
0.0%	0.2% 0.1%	0.3% 0.0%	0.5% 0.1%	1.4% 0.0%		0.3%		0.1% 0.0%		0.1%	0.0%	0.0%	0.1%		0.0%	0.0%	
0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%		0.8%	64.6%	0.0%	1.0%	59.1%	0.0%	0.0%	
0.09 0.29	2.1% 0.0%	0.0% 0.6%	0.0% 0.8%	0.0% 0.0%	0.0% 0.0%	0.0%		0.0% 0.0%		0.0%	0.0% 0.0%	0.0%	0.1% 0.0%		0.0% 0.0%	0.0%	
0.0%	2.01/	0.0%	0.0%	0.01/	0.0%	0.00	0.01/	0.10		0.01/	0.00	0.0%	1 7%	0.00	0.0%	Λ Λ%	
3.8%	2.3% 2.1%	2.0% 2.3%	3.6% 3.7%	2.9% 8.8%	0.4% 7.3%	2.3%	2.3% 2.0%	0.7% 1.2%		6.2% 5.7%	1.6% 4.5%	0.0% 4.5%	5.0% 6.4%	1.3% 5.6%	0.0% 6.0%	0.0%	
0.8%	0.4%	0.4%	0.6%	0.0%	0.0%	0.4%	0.4%	0.2%		0.4%	0.0%	0.0%	0.2%	0.0%	0.0%	0.0%	
1.8% 0.0%	1.0% 0.0%	1.1%	1.3%	2.4% 0.0%	3.7% 0.0%	1.5%	1.5%	1.1% 0.1%		3.5% 0.0%	0.0% 0.0%	81.4% 0.0%	3.9% 0.0%	0.0%	0.0% 0.0%	82.9% 0.0%	
1.2%	0.0%	0.0% 0.5%	0.0% 0.8%	1.3%	0.6%	0.0%	0.0% 0.4%	0.1%		1.1%	0.0%	0.0%	0.0%	0.0%	0.0%		
0.0%	0.0%					0.19				0.0%	0.0%	0.0%	0.1%		0.0% 0.0%	0.0%	
0.1%	1.3%	0.2%		0.0%	0.0%	0.1%		0.0%		0.2%	0.0%	0.0%	0.1%			0.0%	
0.0%	0,0.0	0.0%				0.0%	1	0.0%		0.0%	0.0%	0.0%	0.3%		0.0%	0.0%	
0.4% 1.3%	0.3% 0.5%	0.0% 0.3%	0.7% 0.6%	0.0% 0.0%	0.0% 0.0%	0.0%	0.0% 0.1%	0.1% 0.0%		0.1%	0.0%	0.0%	0.4% 0.1%	0.0%	0.0% 0.0%	0.0% 5.1%	·
0.2%	0.2%	0.1%	0.4%	0.0%	0.0%	0.6%	0.6%	0.3%		0.1%	0.0%	0.0%	0.1%	0.0%	0.0%	5.1% 0.0% 0.0%	Mostly
0.1%	0.2% 0.0%	0.1% 0.0%	0.7% 0.1%	0.0% 0.0%		0.19	0.1% 0.0%	0.1% 0.0%		0.3%	0.0%	0.0% 0.0%	0.0%		0.0% 0.0%	0.0%	4 _
0.0%		0.0%	0.1%	0.0%	0.0%	0.0%		0.0%		0.0%	0.0%	0.0%	2.4%	0.0%	0.1%	0.0%	main
2.3%	1.0%	1.5%	1.6%	0.0%	0.0%	1.7%	1.7%	0.8%		2.7%	0.0%	0.0%	0.2%	0.0%	0.0%	0.0%	
0.8%	12.1%	0.2%	0.8%	0.5%	0.0%	0.1%		0.1%		0.7%	0.0%	0.0%	0.0%		0.0%	0.0%	IIIateriai
0.0%		0.0%				0.0%		0.0%		0.0%	0.0%	0.0%	0.2%		0.0%	0.0%	
0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	1.7% 0.0%	2.6% 0.0%	0.0%	0.0% 0.0%	0.0% 0.0%		0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.2%	0.0% 0.0%	59.1% 0.0%		types a.e
0.1%	0.0%	0.0%	0.1%	0.0%	0.4%	0.2%	0.2%	0.2%		0.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
0.1% 0.3%	0.0% 0.1%	0.0% 0.1%	0.0% 0.2%	0.0%	0.0% 0.5%	0.0%	0.0% 0.3%	0.0% 0.1%		0.0%	0.0%	0.0% 0.0%	0.0%		0.0% 0.0%	0.0%	uoiiiiiaiit
0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%		0.0%	0.0%	0.0%	0.6%	0.0%	0.0%	0.0%	
0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0%	0.19	0.1% 0.0%	0.0% 0.0%		0.4%	29.3% 0.0%	0.0% 0.0%	0.0%		0.0% 0.0%	0.0%	
0.07	0.0%		0.0%			0.07		0.0%		0.0%	0.0%	0.0%	0.0%		0.0%		

↑ Total: CO2 100% as each vehicle (JPN OEMs)

Vehicle hot spot analysis due to material type

Example of applicable products



It depends on each vehicle design concept But we'd like to make agreement of common material classification

Example of Material process

■ Example of Steel

Following Discussion

	Item
1	Steel Discussion
2	Aluminum Discussion
3	Copper Discussion
4	Resin Discussion
5	BATT. Material Discussion (Need to check EU BATT regulation)

End