SLR-64-08/Rev.1

New technology and EPLLA

(Effective Projected Luminous Lens Area in absence of a lens involved in optical design, it could be also called Effective Projected Luminous Lamp Area)

Marcin Gorzkowski, M.Eng., P.Eng. - Regulations Interpretation & Compliance - Marcin@GlobalCarLight.com - Test equipment ant Testing provided by SapphireSTS.com

Sketches of various representations of EPLLA were provided by Larry Rice and Monty Foust and were used in presentation by Richard L. Van Iderstine - Chairman, SAE Measuring Luminous Area Task Force - Scottsdale, AZ, Spring 2008

Some material was paraphrased form a presentation to UN-GRE-SLR by Michael Larsen - SAE Chair for SAE J2999™ EPLLA

What is EPLLA for?				
830638				
Liston, of Lighting Tost	Original intent of the regulation			
mistory of Lighting rest				
Development				
	Glare considerations at various times in the past have also prompted consideration of			
George E. Meese	minimum effective lens areas to keep intrinsic			
In Cooperation with the SAE Lighting Committee	brightness within reason.			

- Lit Area (EPLLA) was put in place in the early 1970s to control glare complaints
 - The theory being that diluting the lens luminance over a larger area to fulfill a lamp function will result in less perceived glare

FMVSS 108 (TSD 108)

From FMVSS 108 Definitions:

Effective light-emitting surface means that portion of a lamp that directs light to the photometric test pattern, and <u>does not include transparent lenses</u>, mounting hole bosses, reflex reflector area, beads or rims that may glow or produce small areas of increased intensity as a result of uncontrolled light from an area of ½° radius around a test point.

Effective projected luminous lens area (EPLLA) means the area of the orthogonal projection of the effective light-emitting surface of a lamp on a plane perpendicular to a defined direction relative to the axis of reference. Unless otherwise specified, the direction is coincident with the axis of reference.

Inner Lens Optics

Inner Lens Optics

Outer Lens Optics

Outer Lens Optics

How to measure EPLLA

(USA and Canada)

- New technologies enable lamp configurations not foreseen back in 1970 when EPLLA was defined (*LEDs, LED control, OLEDs, light pipes, light guides, ...*)
 - Imaginative interpretations for how EPLLA is measured in new designs are causing concerns for
 - industry SAE, GTB and governments NHTSA / Transport Canada / and recently @ UN-ECE
- SAE attempted to develop a Recommended Practice to measure EPLLA
- SAE J299[™] "Determination of Effective Projected Luminous Lens Area (EPLLA) by Design Analysis"
 published in 2013 to guide how EPLLA is determined
 - EPLLA is determined similarly to apparent surface in UN R48
 - During the development of J2999[™], there was very little disagreement between automakers for what elements should and should not be counted towards lit area
 - J2999[™] method enables manufacturers to measure EPLLA prior to production tooling
- SAE J3333 "Determination of the Effective Projected Luminous Lens Area (EPLLA) by Measurement"
 attempt failed
 - Industry concerned about the ability to predict production lamp's measured luminance

- 1. Illuminating surface
- 2. Axis of reference
- 3. Centre of reference
- 4. Angle of geometric visibility
- 5. Light-emitting surface
- 6. Apparent surface based on the illuminating surface
- 7a. Apparent surface based on the light-emitting surface according to paragraph 2.10.2. (a) (with outer lens)
- 7b. Apparent surface based on the light-emitting surface according to paragraph 2.10.2. (b) (without outer lens)
- 8. Direction of visibility

- IO Inner optical part
- LG Light guide
- L Outer lens
- R Reflector
- S Light source
- X Not part of this function
- F1 Function one
- F2 Function two

- 1. Illuminating surface
- 2. Axis of reference
- 3. Centre of reference
- 4. Angle of geometric visibility
- 5. Light-emitting surface
- 6. Apparent surface based on the illuminating surface
- 7a. Apparent surface based on the light-emitting surface according to paragraph 2.10.2. (a) (with outer lens)
- 7b. Apparent surface based on the light-emitting surface according to paragraph 2.10.2. (b) (without outer lens)
- 8. Direction of visibility

- IO Inner optical part
- LG Light guide
- L Outer lens
- R Reflector
- S Light source
- X Not part of this function
- F1 Function one
- F2 Function two

Drawings from Annex 3

Observations:

- UN R48 apparent surface based on light emitting surface per para. 2.10.2
 - Equivalent to the FMVSS 108 effective projected luminous lens (lamp) area (EPLLA)
 - SAE J2999 could be used to determine the **apparent surface** based on light emitting surface
 - Apparent surface/EPLLA may be determined at lamp design stage
- UN R48 apparent surface based on illuminating surface
 - Apparent surface may be defined only for an existing (manufactured) lamp
 - If finished, SAE J3333 could be useful to determine **apparent surface** based on illuminating surface
 - Not very useful method for lamp manufacturers

Suggestion:

- Establish a clear definition of light-emitting-surface/luminous-area providing a light function
- It is imperative that this surface/area can be determined at the **light function's** design stage

EPLLA CHALLENGE

created by modern technology

(glare, understanding of the signal or both)

What is possible (and done) today and what EPLLA was intended to prevent

Luminous area size

UN R48 – a solution to contemplate

5.x.y.z. The light signalling device shall be designed in such a way that the luminous area(s) producing a light function is uniformly lit (illuminated). This requirement is deemed satisfied if the difference (ratio) between the brightest and darkest area (pixel) of [5cm²] is not more than [25%]. Where the illumination of the apparent surface is clearly uniform the exact ratios need not be determined.

Thank you for your attention

Marcin Gorzkowski, M.Eng., P.Eng. - Regulations Interpretation & Compliance - +1 613 875 9747 - Test equipment ant Testing provided by SapphireSTS.com

FMVSS 108 (TSD 108)

Table IV-a—Effective Projected Luminous Lens Area Requirements

Lighting device	Passenger car and buses of lea	rs, multipurpose passenger ss than 2032 mm in overal projected luminous lens a	r vehicles, trucks, trailers, ll width minimum effective rea (sq mm)	Multipurpose passenger vehicles, trucks, trailers, and buses 2032 mm or more in	Motorcycles minimum effective projected luminous lens area (sq mm)	
	Single compartment lamp	Multiple compartmen	t lamp or multiple lamps	overall width minimum effective projected luminous lens area each lamp (sq mm)	Multiple compartment lamp or multiple lamps	
		Each compartment or lamp	Combined compartments or lamps		Each compartment or lamp	Single or combined compartments or lamps
Front turn signal lamp	2200		2200	7500	2200	2258
Rear turn signal lamp	5000	2200	5000	7500	2200	2258
Stop lamp	5000	2200	5000	7500	2200	¹ 5000

Table IV-b—Effective Projected Luminous Lens Area Requirements

	Passenger cars, multipurpose passenger vehicles, trucks, and buses of less than 2032 mm in overall width and with a GVWR of 10,000 lbs or less using a single lamp minimum effective projected luminous	Multipurpose passenger vehicles, trucks, and buses of less than 2032 mm in overall width and with a GVWR of 10,000 lbs or less using dual lamps of identical size and shape minimum effective projected luminous lens
Lighting device	lens area (sq mm)	area each lamp (sq mm)
High-mounted stop lamp	2903	1452

Table IV-c—Effective Projected Luminous Lens Area Requirements

20

Lighting device	School bus minimum effective projected luminous lens area each lamp (sq mm)		
School bus signal lamp	12,258		

2.10.2. "*Light emitting surface*" of a "*lighting device*", "*light-signalling device*" or a retroreflector means the surface as declared in the request for approval by the manufacturer of the device on the drawing see Annex 3 (see e.g. Parts 1, and 4).

This shall be declared according to one of the following conditions:

(a) In the case where the outer lens is textured, the declared light emitting surface shall be all or part of the exterior surface of the outer lens;

(b) In the case where the outer lens is non-textured the outer lens <u>may</u> be disregarded and the light emitting surface shall be as declared on the drawing see Annex 3 (see e.g. Part 5).

2.10.3.2."*Illuminating surface of a light-signalling device other than a retro-reflector*" (paragraphs 2.5.3. to 2.5.7., 2.6.1., 2.5.11. and 2.5.13. to 2.5.16.) means the orthogonal projection of the lamp in a plane perpendicular to its axis of reference and in contact with the exterior light-emitting surface of the lamp, this projection being bounded by the edges of screens situated in this plane, each allowing only 98 per cent of the total luminous intensity of the light to persist in the direction of the axis of reference.

To determine the lower, upper and lateral limits of the illuminating surface only screens with horizontal or vertical edges shall be used to verify the distance to the extreme edges of the vehicle and the height above the ground.

For other applications of the illuminating surface, e.g. distance between two lamps or functions, the shape of the periphery of this illuminating surface shall be used. The screens shall remain parallel, but other orientations are allowed to be used.

In the case of a light-signalling device whose illuminating surface encloses either totally or partially the illuminating surface of another function or encloses a non-lighted surface, the illuminating surface may be considered to be the light emitting surface itself (see e.g. Annex 3, Parts 2, 3, 5 and 6).

2.10.4 The "*apparent surface*" for a defined direction of observation means, at the request of the manufacturer or his duly accredited representative, the orthogonal projection of:

Either the boundary of the illuminating surface projected on the exterior surface of the lens;

Or the light-emitting surface;

Only in the case of a light-signalling device producing variable luminous intensities, its apparent surface that may be variable as specified in paragraph 2.9.3. shall be considered under all conditions permitted by the variable intensity control, if applicable.

In a plane perpendicular to the direction of observation and tangential to the most exterior point of the lens. Different examples of the application of apparent surface can be found in Annex 3 to this Regulation.

