e:misia better technologies : cleaner transport

Energy Consumption & GHG emissions in EMEP/EEA air pollutant emission inventory guidebook

UNECE CLRTAP and EMEP/EEA air pollutant emission inventory guidebook

EEA Report | No 13/2019

EMEP/EEA air pollutant emission inventory guidebook 2019

Technical guidance to prepare national emission inventories

Environmental Policy	Emission Inventories and Projectio					
Conventions and Protocols	The main role of the Task Force on Emission Inventorie Parties in the reporting of air pollutant emissions and p					
Air	includes having responsibility for the development an					
40 years. Clean air.	 of national emissions. The Task Force also provides a te harmonize emission factors, establish methodologies f projections and identify problems related to emissions supports Parties in their implementation of the reporti 					
The Air Convention and > its Protocols						
Convention bodies	Convention's emission reporting guidelines. It also focu The Task Force is led by the United Kingdom, the Europ closely with the Centre on Emission Inventories and Pr the Environment Agency Austria (Umweltbundesamt), acidifying air pollutants, heavy metals, particulate matt Parties to the Convention; reviews submitted inventori					
Executive Body						
EMEP Steering Body						
EMEP Strategies						
Areas of Work 🛛 🗸	reported data; and prepares data sets as input for lor					
EMEP centers	mandate of the Task Force can be found in EB decisi					
Hemispheric Transport of Air Pollution						

ons

es and Projections (TFEIP) is to support projections data to the Convention. This d technical content of the EMEP/European ook used for the estimation and reporting echnical forum and expert network to for the evaluation of emission data and reporting. The Task Force further ing requirements specified in the uses on data quality and inventory review. pean Union (EU) and Finland. It works rojections (CEIP). CEIP, which is hosted at collects emissions and projections of ter and photochemical oxidants from ies in order to improve the quality of g-range transport models. The revised 2019/6 🔑.

Fuel (energy) types and segment subcategories

> Passenger cars

- : Petrol/Diesel (mini, small, medium, large-SUV-executive)
- : Petrol hybrid (mini, small, medium, large-SUV-executive)
- : Petrol/Diesel PHEV (small, medium, large-SUV-executive)
- : LPG/CNG bifuel (mini, small, medium, large-SUV-executive)
- : **BEV** (small, medium, large-SUV-executive)

> Light commercial vehicles

- · Petrol
- : Diesel (N1-I, N1-II, N1-III)

> L-category vehicles

- : mopeds (2/4-stroke <50 cm³) (petrol)
- : motorcycles (2-stroke, <250, 250 750, >750 cm³) (petrol)
- : mini-cars (diesel)
- : ATVs (petrol)

> Heavy duty trucks

- : Petrol (> 3.5t)
- : Diesel (14 GVW subcategories)
 - rigid: 3.5 7.5 t , 7.5 12 t , 12 14 t , 14 20 t , 20 26 t , 26 28 t , 28 32 t , >32 t
 - articulated: 14 20 t , 20 28 t , 28 34 t , 34 40 t , 40 50 t , 50 - 60 t

> Buses

- : diesel (5 segment subcategories)
 - urban buses: midi <=15 t , standard 15 18 t , articulated >18 t
 - coaches: standard <=18 t , articulated >18 t
- Diesel hybrid
- Biodiesel
- : CNG

Vehicle technologies (Euro standards)

Passenger cars	Light commercial vehicles	Heavy duty trucks & buses	L-category vehicles
PRE ECE			
ECE 15/00-01			
ECE 15/02			
ECE 15/03			
ECE 15/04			
Improved Conventional			
Open Loop	Conventional	Conventional	Conventional
Euro 1	Euro 1	Euro I	Euro 1
Euro 2	Euro 2	Euro II	Euro 2
Euro 3	Euro 3	Euro III	Euro 3
Euro 4	Euro 4	Euro IV	Euro 4
Euro 5	Euro 5	Euro V	Euro 5
Euro 6 a/b/c (up to 2016)	Euro 6 a/b/c (up to 2016)	Euro VI A/B/C	
Euro 6 d-temp (2017-2019)	Euro 6 d-temp (2017-2019)	Euro VI D/E	
Euro 6 d (2020+)	Euro 6 d (2020+)		

Methodology for calculating emissions/energy consumption

*Calculation of energy consumption follows similar methodology with exhaust emissions of main pollutants

5

How hot emission/energy consumption factors are produced?

e:misia

CONFIDENTIAL

6

What is energy consumption depending on?

Activity	Hot emissions	Cold emissions
Number of vehicles	Technology / emission standard	Technology / emission standard
Distance travelled [km]	Mean travelling speed [km/h]	Mean travelling speed [km/h]
	Efficiency improvement	Ambient temperature [°C]
		Mean trip distance [km]

Energy Balance & calculation of GHG emissions

e:misia

CO₂ calculation from fuel combustion (1/2)

$$E_{CO_2}^{CALC} = 44.011 \times \frac{FC^{CALC}}{12.011 + 1.008R_{H:C} + 16.000R_{O:C}}$$

>Calculation of *ultimate* CO_2 , i.e. all carbon in fuel oxidized to CO_2

- >Operates on the basis of g/km emission factors for consistency with other pollutants
- >R_{H:C}, R_{O:C} are the ratios of H to C and O to C atoms, respectively in the average fuel molecule

9

CO_2 emission factors from fuel combustion (2/2)

Fuel (<i>m</i>)	Typical Molecule	Ratio of hydrogen to carbon (r _{H:C})	Ratio of oxygen to carbon (r _{o:c})	kg CO ₂ per kg of fuel*
Petrol	[CH _{1.86}] _x	1.86	0.0	3.169
Diesel	[CH _{1.86}] _x	1.86	0.0	3.169
Ethanol	C₂H₅OH	3.00	0.5	1.911
Methanol	CH₃OH	4.00	1.00	1.373
Biodiesel	[CH]x-COOH	1.95-2.03	0.11-0.13	2.797-2.727
ETBE	C ₆ H ₁₄ O	2.33	0.167	2.584
МТВЕ	C ₅ H ₁₂ O	2.40	0.20	2.496
Natural Gas / Biogas (REF)	CH4, market fuels also contain C_2H_6	4.00	0.00	2.473
LPG (REF)	C ₃ H ₈ (15%) – C ₄ H ₁₀ (85%)	2.525	0.00	3.024
E5		1.92	0.026	3.063
E10 (REF)		1.98	0.053	2.694
E75		2.73	0.38	2.111
E85 (REF)		2.84	0.429	2.026
ETBE11		1.91	0.018	3.094
ETBE22		1.96	0.036	3.021
B7 (REF)		1.86	0.007	3.144
B10		1.86	0.010	3.133
B20		1.87	0.020	3.096
B30		1.88	0.030	3.059

*CO2 emission factors are based on an assumed 100% oxidation of the fuel carbon (ultimate CO2)

CO₂ from lubricant oil consumption

 $E_{CO_2}^{CALC} = 44.011 \times \frac{FC^{CALC}}{12.011 + 1.008R_{H:C} + 16.000R_{O:C}}$

Category	% of fuel consumption
Passenger cars	0.1
Heavy-duty vehicles	0.3
2-stroke mopeds	550

- Total contribution 0.2–0.3% for developed countries
- Contribution potentially more important for developing countries

CO₂ from urea consumption

- > Urea used in SCR systems to reduce NOx emissions
- > DIN 70070 specifies that urea should be in aqueous solution at a content of 32.5% wt (±0.7%) and a density of 1.09 g/cm³
- > Small amounts of CO₂ emissions are also produced

$$(NH_2)_2CO + H_2O \rightarrow 2NH_3 + CO_2$$

 $6NO + 4NH_3 \rightarrow 5N_2 + 6H_2O$
 $6NO_2 + 8NH_3 \rightarrow 7N_2 + 12H_2O$

- > If total commercial urea solution sales are known (UC in litres), then total ultimate CO_2 emissions (in kg) are: $E_{CO_2, \text{ urea}} = 0.26 \times UC$
- If total urea is not known, this can be assumed 5-6% @ Euro V and 3-4% @ Euro VI of fuel consumption (percentages are in It AdBlue / It Fuel)

e:misia

Thank you!