ACPE Pedal Application Tests

Patrick Seiniger, BASt

Motivation, Concept and Questions

- ACPE04 had some discussions on how the "creep" method can be tested
- "Creep" Method: vehicle creeps while "pedal misapplication" is applied (as opposed to: vehicle is initially stationary with the brakes applied)
- Concept: AT vehicle was equipped with an accelerator robot that applies $400 \% /$ s accelerator speed when passing by a light switch reflector
- Question: What are the delays? What are the resulting speeds at the "hypothetical" target?

Vehicle and Equipment

- Older Ford Fiesta, automatic transmission
- Vehi.co CG300 accelerator robot
- Pepperl\&Fuchs reflection light switch with TTL output, directly fed to the accelerator robot
- GeneSys ADMA-G for speed \& position measurement, fed by CAN bus to the accelerator robot
- Data logging by accelerator robot

Robot System

bast
 Federal Highway
 Research Institute

Cable winch

Robot Programs \& Demonstration

- Robot programmed with simple scripting language

```
PosZero
PosWaitDigiTrig(e, 0) \longleftarrow When activated, TTL drops to 0
PosMoveTo(18.49,100) on trigger input 0.
PosHold(1)
PosZero
End
Final position: 100\%
Pedal travel \(=4.623 \mathrm{~cm}, 400 \% / \mathrm{s}=18.49 \mathrm{~cm} / \mathrm{s}\)
Name of selected command
(physical meaning of arguments [unit])
Simulate Replot



\section*{Delays}

Delay between trigger input and position > 10\% for the first time


Delay pedal>10\% \& \(\mathrm{v}_{\mathrm{x}}>10 \mathrm{~km} / \mathrm{h}\) (first time)


\section*{Speeds at Target}

Vehicle Speeds at 0, 1, 1.5 and 2 m


\section*{Conclusion}

\section*{bast}
- Pedal application with light switch-triggered robot allows for precise control of the accelerator pedal
- The example vehicle creeps at approx. \(6.5 \mathrm{~km} / \mathrm{h}\)
- The example vehicle has a delay of approx. 1 second for crossing \(10 \mathrm{~km} / \mathrm{h}\) after initial pedal application
- With the planned pedal application profile, the speed after 1.5 m is just below \(10 \mathrm{~km} / \mathrm{h}\)
- Other vehicles still need to be investigated```

