Update to UNECE PMP #54 | 09 Jan 2024 Brake Emissions from Heavy Truck Vocations Based on STATE OF CALIFORNIA REPORT # CA21-3232

John Koupal*, Yuke Zhao, Allison DenBleyker, Sandeep Kishan

Carlos Agudelo, Ravi Teja Vedula

Simon Bisrat

New Research On Brake Wear Particulate Matter Emissions From Several Heavy Truck Vocations In California

> John Koupal, Yuke Zhao, Allison DenBleyker, Sandeep Kishan Eastern Research Group, Inc. (ERG)

> > Ravi Vedula, Carlos Agudelo Link Engineering Company (LINK)

Simon Bisrat California Dept. of Transportation (CalTrans)

32nd CRC Real World Emissions Workshop March 13-16, 2022

Original presentation (slides 1...24)

...the rest of the team

ERG – Alan Stanard, Timothy DeFries

EPA – Chad Bailey, Bob Gianelli

LINK – Quinn O'Hare, Jerry Lawruk, Mark Hunt, Brian Nycek, Josh Bautell, Trent Fagrell, Aaron Voisard

CARB – Sonya Collier, Seungju Yoon, Jeff Long, Sara Forestieri, Qi Yao, Inna Dzhema, Oliver Chang

Brake suppliers – Federal-Mogul, ArvinMeritor, Bendix

Background Temperature regimes High-level results EU Aerosolfd

Background

ERG/LINK studies to update EMFAC2021 brake emissions:

- **CARB:** Light-Duty Brake Study Project 17RD016
- Caltrans: Heavy-Duty + EV Brake Study (today's talk)
- <u>https://ww2.arb.ca.gov/resources/documents/brake-tire-wear-emissions</u>

Factors to Account for in Emissions Inventories for HD Truck Brakes

Three-step assessment

Project Phases

Work Packages

Brake Temperature Evaluation	Track testingBrake temperature modeling
Test Matrix Development	HD brake market surveyMass balance analysis
Emissions Testing	 Dynamometer build-out Dyno temperature adjustment Emissions tests (filter & real time sampling)
EMFAC Update	 Determine significant effects Aggregate & roll up PM filter results Determine speed corrections

Heavy Truck vocation in California was a crucial aspect of the project

Input for Brake Wear Balance Estimates

Using business intelligence

by braking system

by vehicle vocation

Brake Wear Mass Balance Analysis per EMFAC2011 Vehicle Category

BRAKE WEAR INDEX (BWI) as surrogate of activity and intensity

10

Drive Cycles

Using 2021 field study from University of California – Riverside (UC-CERT)

Brake Wear Index by Vocation

Relative to the average cycle speed

Brake Temperature Evaluation

Vehicle	Load	Vocation						
		Dryage	Beverage delivery	Long haul	Towing	Refuse	Urban bus	
Class 8 ADB	Full	•	۲	•				
	Unloaded	•						
Class 8 drum	Full	•	•					
	Unloaded	•	•					
Class 6 hydraulic	26k lbs		●		•			
Refuse	Full					•		
Bus	37.5k lbs						•	

Example Brake Temp Results

e.g. Test track measurement on Class 8 drum brake on beverage delivery cycle

Thermocouples in primary brake shoes of all wheels per FMVSS 121

Brake Temperature Modeling

Updated UMTRI model with track data

Adaptations:

- Braking events v. coast downs
- Estimation of braking power

Target temperatures for emissions tests

Emissions Test Matrix

Combining vehicles, brake types, cycles, loading, and repeatability tests

Vehicle	Brake/axle	Cycle 1	Cycle 2	Cycle 3	Load	Repeat	EMFAC class
Class 8	drum steer	Drayage N*	Cement	LH OOS**	1		T7
	drum drive	Drayage N	Cement	LH OOS	2	Yes	
	ADB steer	Drayage N	Cement	LH OOS	2	Yes	
	ADB drive	Drayage N	Cement	LH OOS	1		
Refuse	ADB steer	Refuse			2		Refuse
	ADB drive	Refuse			1		
Urban bus	ADB steer	Urban bus			1		Bus
	ADB drive	Urban bus			1		
Service	Hyd. Disc steer	Beverage	Delivery		1		Т6
	Hyd. Disc drive	Beverage	Delivery		1	yes	

*Northern CA Drayage ** Long-Haul Out-of-State

Multipurpose Heavy Truck Dynamometer

Example

overview of dyno setup (showing emissions upgrade)

brake emissions enclosure

Brake Dynamometers Types

Current GTR 24 provides the basis to cover the entire vehicle range

GTR 24 dyno *Light Vehicles*

GTR 24-compliant upgrade Light Vehicles

GTR 24-based upgrade *Commercial Vehicles*

PM10 Filter Results – Individual Wheel

Significant effects from cycle, axle position, and type of brake

■ Drive ■ Steer ■ Trailer

Total Truck PM₁₀

The $PM_{2.5}/PM_{10}$ fraction exhibited differences accross brake types

Example Real-Time Results

e.g., TPN23 & PM_{2.5} vs. temperature, brake energy, speed (Urban Bus)

Real-Time Results for Particle Size Distribution

e.g., Urban Bus

Caltrans Project's Advancements to Update EMFAC2021

As continuation of CARB program on LDV

CALTRAS, CARB, EPA Steering team (project management and scientific)

Updates: Proving ground data Brake temp. model Current formulations Current cycles

Test setup:

Lab based Aligned with PMP/IWG Using driving cycles Realtime mass, PN and size distribution (6 nm...20 µm) **PM₁₀, PM_{2.5} & TPN23:** Hydraulic disc, air disc, and drum brakes

Loaded and unloaded configurations

OEM and aftermarket friction materials

... one more thing

AeroSolfd filtration devices

Fast Track to Cleaner Urban Air

Partnership

Reduce fleet PM > 90% with a cost < 10% of fleet value

sofia development association Steinbeis Europa Zentrum Enabling Innovators to Grow

Route Mapping

Minimal intrusion, brake activity and temperature, actual route mapping

Drive Cycle Design

Following WLTC-WLTP method

GTR XX for heavy trucks

Some topics to consider within TF5

1. Analysis and evaluation of existing driving cycles, databases, and factors (e.g., vehicle dynamics, topography, type of foundation brake, engine retarders, electrification)

- 2. Development of realistic driving cycle(s) considering vehicle factors and vocation(s) by brake type
- 3. Adapt all applicable items from GTR 24

Simon Bisrat

John Koupal, Yuke Zhao, Allison DenBleyker, Sandeep Kishan <u>Carlos Agudelo</u>, Ravi Teja Vedula "An impressive array of instruments and procedures exist to measure PM and associated pollutants in great detail. But until atmospheric chemists know what should be measured, they are faced with an impossible task, as everything cannot be measured in ultimate detail."¹

¹ Robert Phalen, The Particulate Air Pollution Controversy – A Case Study and Lessons Learned, 2002

Envelope dimensions for brake assemblies

The embodiment of the actuation system has a significant effect on overall size

Air-disc brakes L2 [450...650 mm], D2 [450...600 mm]

Air-drum brakes L5 [550...850 mm], D4 [380...520 mm]

Updated EMFAC2021 with HD Brake PM₁₀ Rates

Class 8 HD (T7)

- Rates based on projection of turnover (Drum to ADB)
- Reduced stopping rules expected to hasten this turnover
- Market survey estimates only 15% Disc currently
- Assumed 50% by 2026.

Medium HD (T6)

- Rates assume 100% hyd. disc, based on market survey
- EMFAC2017 assumed mix of disc and drum

