European M

ALUMINIUM

Background material

28 September 2023

System boundaries for intermediate aluminium products

Source: European Aluminium, methodological guidance for the environmental assessment of intermediate and semi-finished products - link

Variation of CF for primary aluminium

4.3.1. Impact Category Indicator Results⁴

The impact category and additional indicator results (including GWP breakdown) have been calculated using GaBi version 2022.2. Water scarcity footprint results are calculated in accordance with ISO 14046. All results are reported per tonne aluminium ingot.

	Global	Scenario 1	Scenario 2	Scenario 3	Scenario 4
$\textit{Bauxite} \rightarrow \textit{Alumina} \rightarrow \textit{Aluminium}$	GLO	$CNA \rightarrow CNA \rightarrow CNA$	OCA→OCA→GCC	AFR→EUR→EUR	SAM→SAM→CAN
Acidification Potential (AP) [kg SO ₂ -Equiv.]	89	108	44	29	54
Depletion of fossil energy resources (DFE) [MJ]	161,640	193,010	147,380	74,710	44,782
Eutrophication Potential (EP) [kg Phosphate-Equiv.]	6	7	4	2	2
Global Warming Potential (GWP 100 years) [tonne CO ₂ -Equiv.]	16.8	20.3	11.3	7.4	5.4
Ozone Layer Depletion Potential (ODP) [kg R11-Equiv.]	2.6E-9	3.4E-9	2.8E-9	2.6E-9	3.6E-9
Photochemical Ozone Creation Potential (POCP) [kg Ethene-Equiv.]	6	8	3	2	3
Water Scarcity Footprint (WSFP - AWARE) [m ³ World-Equiv.]	775	842	85	445	575

Table 11: Impact category and additional indicator results (per tonne of primary aluminium ingot)

⁴ The results of this study are <u>not intended to be used in comparative assertions</u> and are an *example* of how the inventory data can be used in life cycle assessments. 37

Aluminium classification

VDA classification

1.2.3	high-alloy cast iron
2.1	Aluminium / aluminium alloys
2.1.1	Cast aluminium alloys
2.1.2	Forged aluminium alloy
22	Magnesium magnesium allovs

Comments on VDA classification:

- \rightarrow Forged aluminium is a small % in vehicles
- → We usually differentiate between cast aluminium alloys & wrought aluminium alloys
- → Cast aluminium alloys are used for casting application (engines, wheels...)
- → Wrought aluminium alloys are used for rolled and extruded applications (doors, beams, CMS...)
- EN 1676:2020 for cast alloys
- EN 573-3:2019 for wrought alloys

Cast and wrought alloys

Cast alloys

- Alloys that have very high "castability*"
- High content of silicon (ca. 8-10%)
- Highly alloyed
- Used in casting
- Are divided (informally) in primary and secondary cast alloys.
- High percentage of alloying elements may have an important impact in term of Carbon footprint calculations

Wrought alloys

- Alloys for which the most important properties are the ductility and the formability
- Lower alloying element content (ca. 2-5%)
- Used in rolling and extrusion

Families of alloys for modelling

		Major alloying element	Atoms in solution	Work hardening	Precipitation hardening	
	1XXX	None (min. 99.00% Al)		Х		
	3XXX	Mn	х	х		Non-heat treatable
WROUGHT ALLOYS*) EN AW-	4XXX	Si	х	х		
	5XXX	Mg	х	х		alloys
	2XXX	Cu	Х	(X)	х	Heat treatable alloys
	6XXX	Mg + Si	х	(X)	х	
	7XXX	Zn	X	(X)	х	
	8XXX	Other	x	(X)	х	

Aluminium Alloy Designation System (CEN)

Cast Aluminum Alloy Designation System

Alloy Series	Principal Alloying Element
1xx.x	Aluminum (99.000% minimum)
2xx.x	Copper
3xx.x	Silicon plus copper and/or magnesium
4xx.x	Silicon
5xx.x	Magnesium
6xx.x	Unused series
7xx.x	Zinc
8xx.x	Tin
9xx.x	Other elements

 \rightarrow For carbon footprint calculations, it may been useful to differentiate in different alloy families, especially for casting alloys that have higher alloy content.

Aluminium use in cars (European cars)

Components & Families Aluminum content is distributed between 12 component families, each of which encompasses a various number of components – adding up to a total of 96 components

1. BIW (13 components)
Crash Management System (CMS)
Cross members
Door beams
Door sills/rockers
Front longitudinals
Rear longitudinals
Front-end structure (incl. radiator support)
nstrument panel structure
Pillars
Roof bows (incl. windshield header, actual roof bow, and rear he
Shock towers
Truck bed rail
Floor group (incl. firewall and rear panel)
Other BIW components

2. BRAKE	S (6 components)	
ABS/ESP	housings	
Brake	calipers	
Rotor hat	s/Bells	
Brake bo	oster vacuum parts	
Electric b	rake boosters	
Maste	r cylinders	
Other bra	ke components	
3. CHASS	IS (4 components)	
Control a	rms/links	
Knuckles		
Subfra	mes/cradles	
Bushings		
Other ch	issis components	
	0FF (7	

5. DRIVELINE (4 components)
Differential carriers (incl. case)
Drive shaft
Transmission mounts
Yokes
Other driveline components
6. EV SPECIFIC (5 components)
Ballistic protection

 Ballistic protection
Battery cooling plates
Battery pack housing (may incl. sills)
Electric motor housing(s)
V gearbox housing
Other EV specific components (cables, connectors, HV devices housin

Battery foil, battery cell/module housings are not part of the scope

Acce	ssory brackets
Alter	nator case
Bed	plates
► Er	gine block
Head	/Cam covers
► 0	linder heads
Fron	covers
Fuel	rails
Intak	e manifolds
Mou	nts
Oil fi	ter adapters
Oil p	ans
Pisto	ns
Start	er motor housings
Ther	mostat housings
Timir	ng chain covers
Turb	ochargers
Wate	r outlet tubes
Wate	r pump housings
Othe	r powertrain components

9. THERMAL MANAGEMENT (10 components Compressor housings (incl. scrolls, pistons)

Condensers
Connection hardware (incl. heat transfer lines)
Evaporators
Heat shields
Heat sinks
Heater cores
Intercooler (charge-air cooler)*
Oil coolers
Radiator
Other thermal management components
*Intercooler has been included in the compon list after project kick-off

10. TRANSMISSION (9 components) Automatic & CVT cases

Brackets

Extension covers

Manual clutch housings Manual transmission cases

Other transmission component

Transfer cases/PTUs

Transfer plates Transmission valves

Valve bodies

11. TRIM (14 components)

najastment motor noasings
Airbag canisters
Computer/sensor housings
Overhead/luggage rails
Running boards
Seat belt spools/retractors
Seat frames
Seat motor housings
Seat pans
Seat tracks
Sunroof motor housings
Sunroof rails
Decorative trim
Wiper arms
Other trim components

12. WHEELS (1 component) Road wheels

OTHER MISCELLANEOUS PARTS

An average European car has 205kg of aluminium today

DUCKER

Components (total of 30) selected to be focus components for a detailed analysis

▶ Fenders

Hood
 Rear doors

► Roof

Front doors

▶ Tailgate/Trunk

Other closure components

:::::

....

....

....

....

....

::::

::::

....

:::::

.....

:::::

....

....

::::

....

.

More info here for European Market, similar study for US market available

Main messages

- Primary aluminium may be used as a proxy for aluminium alloys, especially wrought alloys
- If secondary datasets are used, it is fundamental that these datasets are representative for the primary aluminium used in term of geography (electricity mix adaptation)
- The use of primary data for the modelling of primary aluminium is recommended.

 \rightarrow Question: how to model aluminium alloys? How to model alloying elements in aluminium alloy?

THANK YOU!

Presented by

Benedetta Nucci

Senior Manager – Mobility & LCA

starita@european-aluminium.eu

European M Aluminium

ANYTHING BUT BASIC

