

Feedback to material classification

23rd Nov 2023

Opinion from OICA to the material classification

Basically, OICA agree to JASIC's steel, aluminium, copper and plastic classification.
 However, we have some opinions and a concern on this classification and calculation formula.

<u>Opinions</u>

- 1. Every material (Steel / Aluminium / Copper / Plastics) should have each flow diagrams reference.
 - Aluminum recycle input should also in lower process (melting process)
- 2. Each scrap (Internal, Home, External manufacturing scrap(PIR), EoL scrap(PCR)) should have flow image in flow model.
 - This subject should be discussed with SG5 (and maybe with SG3)
- 3. Loss rate should be yield rate on formula (But keep scrap / loss rate as the reference for another objective)
 - \checkmark This subject should discuss also with SG3 and 5
- 4. Aluminum process 2 and 3 also should be named Electrolysis process like as 1.

<u>Concerns</u>

- 1. We don't have visibility and fairness on how to choose material classification.
 - We also think cutoff for the material classification should be clarified.
- 2. We are wondering what is the assumption of each upper and lower process. We would like to JASIC member to clarify each route.
 - Also, we kindly request to leading team to invite each material expert to SG2 meeting.

Opinion1.Material flow reference

✓ We propose to have a reference of process on each material.(Like as below picture)

✓ Currently we could see only for steel but should have also for other materials.

reference: (2)Impact of recycling effect in comparative life cycle assessment for materialsselection - A case study of light-weighting vehicles https://www.sciencedirect.com/science/article/pii/S0959652622009465?via%3Dihub

7

Opinion1.Material flow reference

 Why we are proposing this is we think Aluminum recycle input should also in lower process (melting process) (We would like to hear an opinion from Aluminum industry.)

Opnion2.Scrap flow

- We propose to add scrap flow to the process model.
- ✓ However, we understand scrap flow needs to be confirmed with SG5 as boundary discussion.

• Reference model has scrap flow. We propose to add such flow definition on process model.

Opinion3. Loss rate on formula

- ✓ We think loss rate on the calculation method formula looks yield rate
 - → Otherwise, if we use loss rate value, then M (Material mass) could be thousand times of M0 (product weight) value
- ✓ However, we would like to keep loss rate / scrap rate for another objective. We assume these are necessary to have discussion with SG3 and SG5.

Opinion4. Electrolysis process naming

✓ Aluminum process 2 and 3 also should be named Electrolysis process like as 1.

✓ Then, process 1 and 2 are same electrolysis process. (Both could be merged to one process.)

Concern1. Visibility and fairness on material selection

✓ We are wondering and concerning how we can make visibility and fairness on material classification.

✓ There is not explainable criteria or threshold on current weight and CO2e distribution evidence data.

threshold in SGZ.

- ✓ Also, we would like to discuss how we calculate cutoff material CFP.
- ⇒If our concerns are agreed in SG2, we would like to propose 2 scenario of cutoff approach.

Stee					Japan Automobile Standards Internationalizatio Center	
		BI	ΞV			
	Material Classification	Wt(%)	CO2e(%)			
Cold-I	rolled hot-dip plated steel sheet	22.9%	16.6%			
Carbo	on steel bar/wire rod	13.5%	9.9%		100	
Cold F	Rolled Steel Sheet	14.0%	9.0%		• ISO	
Specia	al Steel Bars	7.6%	7.2%		EN standards	
Cast I	Iron	3.8%	4.1%			
Hot-ro	olled steel plate	1.3%	0.8%	Matching	Material classification	
Hot-ro	olled hot-dip plated steel sheet	0.5%	0.3%	tool		
SUS s	steel sheet/bar	0.2%	0.2%		Some of materials are selected even 0.0% of V	
Electr	romagnetic steel sheet	0.0%	0.0%			
Sinter	red steel	0.0%	0.0%		and CO2e(%) ➡OICA thinks we s	should agree a criteria and/or
						0

Concern1. CutOff approach – scenario 1

	Material	% Weight in vehicle	% CO2e in vehicle	Carbon Footprint calculation / Data used	Cut Off rule	
	Material 1	any %	10,00%	Material 1 EF*	The weight of materials [kg	
Scenario 1	Material 2	any %	9%	Material 2 EF	is monitored and the EF [kg	
	Material 3	any %	5%	Material 3 EF	CO2e/kg] is defined in accordance with Levels	
	Material 4	any %	2%	Material 4 EF		
	Material 5	any %	0,5%	Material 5 EF	definitions : average /	
	Material 6	any %	0,3%	Material 6 EF	secondary data or primary	
	Material 7	any %	<mark>0,2%</mark>	Material 7 EF	data	
	Material 8	any %	0,15%	Materials not considered	in the Carbon Footprint	
	Material 9	any %	0,08%	calculation		

- Threshold value for cutoff approach is based on the % of Carbon Footprint / vehicle : value 0,2% (to be confirmed)
- Scenario 1 Cut Off : Below the threshold the materials are not considered

• Disadvantage of the scenario : when computed the data at vehicle level, we may miss figures to calculate a consistent Vehicle Carbon Footprint

Concern1. CutOff approach – scenario 2

	Material	% Weight in vehicle	% CO2e in vehicle	Carbon Footprint calculation / Data used	Cut Off rule	
	Material 1	any %	10,00%	Material 1 EF*	The weight of materials [kg	
	Material 2	any %	9%	Material 2 EF		
	Material 3	any %	5%	Material 3 EF	CO2e/kg] is defined in	
	Material 4 Material 5	any %	2%	Material 4 EF	accordance with Levels definitions : average / secondary data or primary	
Sconaria 2		any %	0,5%	Material 5 EF		
Scenario z	Material 6	any %	0,3%	Material 6 EF		
	Material 7	any %	<mark>0,2%</mark>	Material 7 EF	data	
	Material 8	any %	0,15%	(Matarial Q + Matarial Q)	The EF could be kept as	
	Material 9	any %	0,08%	EF average	secondary data as non prioritized perimeter	

- Threshold value for cutoff approach is based on the % of Carbon Footprint / vehicle : value 0,2% (to be confirmed)
- Scenario 2 Cut Off : the EF data of the materials below the threshold are computed all together.
- Advantage of this scenario : the vehicle carbon footprint is complete

Concern2. Assumption of each process

- ✓ Current process model image has several process in an image. Therefore, we cannot assume what is the actual assumption of each process route. We would like to JASIC member to clarify each route.
- ✓ After this route will be clarified, we would like to hear the opinion from each material industry expert.
- ✓ We kindly request to leading team to invite each material industry expert to SG2 meeting.

Material flow Concept - Steel	Japan Automobile Standards Internationalization	on .
	Under Discussion in SG2	<mark>.</mark>
Upper process	process input output	
iron ore Natural gas Patural Patural Construct Preduced iron Patural Patura	he direct reduced iro nption in this image. ke us confusion to stu	n could have 2 udy if each
iron ore Hydrogen Hydrogen Scrap Scrap	Atomizatio n 14. Sintered steel	