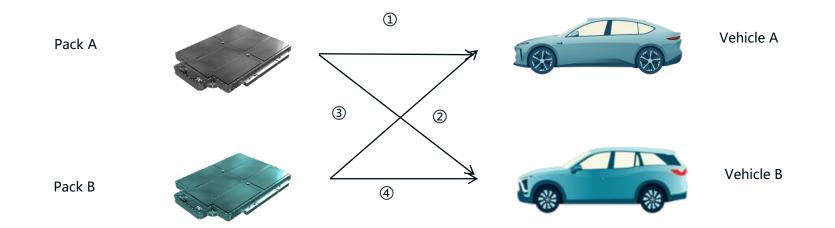

Regulation Proposal for Battery Durability for Battery Swap Electric Vehicles (BSEV)

Prepared by China April 17, 2024

Background


- By the end of 2023, China saw a total of 20.41 million new energy vehicles (NEVs) going on the road. During 2023, around 7.43 million NEVs were registered.
- By 2032, in total over **19 million** NEV batteries will expire 8 years of warranty in China.
- How to improve battery durability and extend battery life is a great challenge for the whole EV industry.

- From 2019, battery swap mode has entered a rapid development stage in China after years of exploration. By the end of 2022, there were over 2,000 swap stations in China. It is expected that by 2025, the total number of swap stations will reach more than 30,000.
- Battery swap mode is especially suitable for private cars, taxis, and also commercial vehicles. 20%~30% heavy duty electric trucks are in battery swap mode.
- As for battery durability, battery swap mode has advantage to optimize performance through **balanced operation** in swap stations:
 - ✓ Balancing battery usage frequency
 - ✓ Optimizing fast charge proportion
 - Order-based control of battery SOC during storage
 - Intelligent thermal management
 - ✓ …

Characteristic of Battery Durability Evaluation for BSEV

- The battery pack is not fixed on one specific vehicle/vehicle type during its service life. Battery aging is not synchronized with vehicle aging.
- □ For battery swap electric vehicles (BSEV), the investigation object of in-vehicle battery durability should be "battery" instead of "vehicle".

- How to verify the battery durability based on different vehicles?
- How to evaluate if the swap batteries meet the performance requirements?

Need to be clarified in a new regulation

Regulation Framework Proposal for BSEV

GTR 22	Proposal for BSEV
5. Requirements	
5.1 State-of-Certified Range and State-of Certified Energy (SOCR and SOCE) monitors	Follow GTR 22
5.2 Battery Performance Requirements	Table 1/2: Vehicle age/km should be modified as REESS age/km
6. In-use Verification	
6.1 Definition of Families	Follow GTR 22
6.2 Information Gathering	Follow GTR 22
6.3 Part A: Verification of SOCR/SOCE monitors	Propose a test method using battery pack to verify SOCE
6.4 Part B: Verification of Battery Durability	Follow GTR 22
Annex 1 Vehicle Survey	Add REESS Survey
Annex 2 Values to be read from vehicles	Add/Adjust parameters for battery swap vehicles
Annex 3 Determination of Performance Parameter during Part A Test Procedure	Propose a test method using battery pack to verify SOCE

Proposal 1 – Battery Performance Requirements for Swap Batteries

□ Table 1/2: Vehicle age/km should be modified as REESS age/km

Table·1← Battery Energy based (SOCE) MPR ←		Table·2← Range based (SOCR) MPR ←			
REESS -age/km-for-categories-1-1-and-1-2-in-the-scope-of-this- GTR ⁴³	PEV⇔	REESS -age/km-for-categories-1-1-and-1-2-in-the-scope-of-this- GTR¢ ²	PEV⊲		
From • REESS • start • of • life • to • 5 • years • or • 100,000 • km • accumulated • driven, • whichever • comes • first ←	80°per°cent⇔	From •REESS • start • of • life • to • 5 • years • or • 100,000 • km • accumulated • driven, • whichever • comes • first ←	$(Reserved)A \in$		
REESS more than 5 years or 100,000 km accumulated driven, and up to whichever comes first of 8 years or 160,000 km	70ºperºcent⇔	REESS more than 5 years or 100,000 km accumulated driven, and up to whichever comes first of 8 years or 160,000 km	(Reserved)←		
\leftarrow		\leftarrow			
REESS -age/km·for-category-2-in-the-scope-of-this-GTR€	PEV↩	REESS -age/km-for-category-2-in-the-scope-of-this-GTR€	PEV⇔		
From • REESS •start •of •life •to •5 •years •or •100,000 • km •accumulated •driven, •whichever •comes •first⇔	(Reserved)	From • REESS • start • of • life • to • 5 • years • or • 100,000 • km • accumulated • driven, • whichever • comes • first	(Reserved)		
REESS more than 5 years or 100,000 km accumulated driven, and up to whichever comes first of 8 years or 160,000 km	(Reserved)	REESS more than 5 years or 100,000 km accumulated driven, and up to whichever comes first of 8 years or 160,000 km	(Reserved)←		

Proposal 2 – Values to be read from vehicles for Swap Batteries

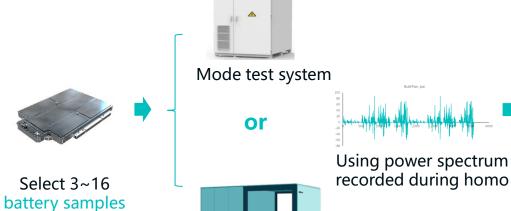
In the following list the value 3, 5, 6 should be the accumulated distance of the swap battery while serving different vehicles
Add "Date of manufacture of the swap battery" to identify the battery service time

Values to be read from vehicles

- 1. On board SOCE value (in %)
- 2. On board SOCR value (in %)
- 3. Odometer (in km) \rightarrow Battery accumulated driving distance (in km)
- 4. Date of manufacture of the vehicle
- 4a. Date of manufacture of the swap battery
- 5. Total distance (sum of the distance driven and the virtual distance) [km], if applicable \rightarrow Total distance (sum of the battery accumulated distance driven and the battery accumulated virtual distance) [km], if applicable
- 6. Virtual distance (in km), if applicable → Battery accumulated virtual distance (in km), if applicable
- 7. Worst case certified energy consumption of PART B family [Wh/km], if applicable
- 8. Total discharge energy in V2X [kWh], if applicable
- 9. Elapsed time since last charged by more than 50 per cent SOC swing [Days]
- 10. Average battery temperature while propulsion system is active, during charging and (if equipped) during non-usage of the vehicles (i.e. non-propulsion system active, non-charging)
- 11. Total discharge energy for non-traction purposes [Wh], if applicable Values that may be required by regional regulations:
- 12. Energy throughput [Wh]

Proposal 3 – SOCE Battery Pack Level Test

□ Test Procedure

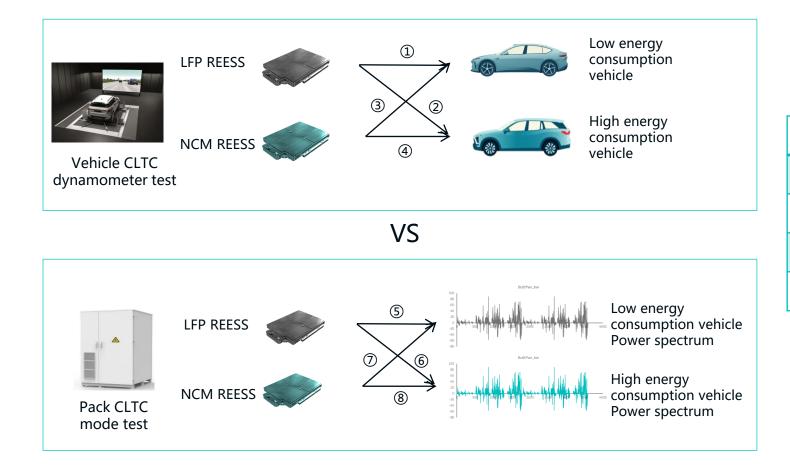


Homologation WLTC dynamometer test

Record:

- ✓ Certified range for the same battery model on different vehicle types
- ✓ UBE _{certified} for the same battery model on different vehicle types
- Power spectrum during homologation WLTC/CLTC test for the same battery model on different vehicle types

Battery swap station



Battery UBE

measured

Verification for SOCE Battery Pack Level Test

A comparative study of vehicle level test and battery pack level test was conducted. 8 groups of cross-comparison test verification results are as follows:

	Service Time	Range
LFP REESS	820 days	28,922km
NCM REESS	273 days	14,639km
Low EC vehicle	574 days	24,421km
High EC vehicle	346 days	17,849km

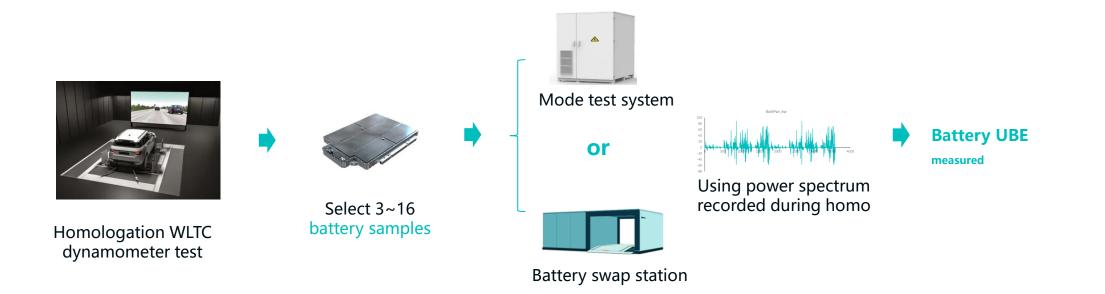
Verification for SOCE Battery Pack Level Test

LFP REESS 75kWh

BMS SOCE $_{read} = 92.2\%$

Test method	Parameter	Low EC vehicle	High EC vehicle	Compariso n	Test method	Parameter
Homo	UBE _{certified} /kWh	73.87	73.86	-0.01%	Homo	UBE _{certified} /kWh
Vahiela tast	UBE measured	① 68.12	② 68.24	0.18%	Vahiele test	UBE measured
Vehicle test	SOCE measured	92.22%	92.4%	/	Vehicle test	SOCE measured
Battery test	UBE _{measured} /kWh	⑤ 68.62	6 68.16	-0.67%	Battery tes	UBE _{measured} /kWh
battery test	SOCE _{measured} 92.89% 92.28% /	buttery tes	SOCE measured			
Compariso n	UBE measured	0.73%	-0.12%		Compariso n	UBE measured

NCM REESS 100kWh


BMS SOCE $_{read} = 98.7\%$

EC cle	Compariso n	Test method	Parameter	Low EC vehicle	High EC vehicle	Compariso n
73.86	-0.01%	Homo	UBE _{certified} /kWh	95.42	94.31	-1.18%
② 68.24	0.18%	Vehicle test	UBE measured	③ 91.73	④ 92.03	0.33%
92.4%	/	venicie test	SOCE measured	96.13%	97.59%	/
6 68.16	-0.67%	Battery test	UBE _{measured} /kWh	⑦ 92.09	⑧ 91.93	-0.17%
92.28%	/		SOCE measured	96.51%	97.48%	/
-0.12%		Compariso n	UBE measured	0.39%	-0.11%	

- ✓ UBE measured of battery pack level test is basically the same as that of vehicle level test, no matter LFP or NCM batteries. The difference of test results is less than 0.73%.
- ✓ Battery pack level test can be regarded as equivalent to vehicle level test.

Advantages of Battery Level Test

- □ No issue about the source of sample vehicles
- □ No issue about the cooperation willingness of vehicle users
- **D** Convenient test in battery swap station
- □ Lower test cost for OEMs, save public resources

Appeal to the EVE Working Group

Evaluation of battery durability for BSEV has its own particularity. It's necessary to formulate specified checking rules for BSEV, in order to eliminate possible implementation issues of GTR 22 for BSEV OEMs and test authorities.

□ A consensus should be reached within the working group:

- Draft a new GTR regulation regarding battery durability for battery swap electric vehicles, or
- Form an intra-group resolution as GTR 22 implementation guideline for battery swap electric vehicles

China working group is willing to conduct further study and draft related documents

Thank you