Initial working document by Secretary

Model Regulation with respect to thermal propagation of REESS for electric power train

Remark: The text below was prepared by the interim secretary, acknowledging tremendous contribution by some of industry experts, to facilitate the discussion at the ad-hoc Special Interest Group on model regulation regarding the safety of electric vehicles with a focus on a thermal propagation test method.

The contents are, in principle, the compilation of the available materials which seemed to have received certain level of consent at the former informal working group on EVS-GTR. As the SIG activity is focusing on the regulation applied under type approval scheme, the structure has been transformed to the UNR100 format.

In this document, the texts in blue are current texts of UN-R100 which would be related to thermal propagation requirements and the texts in orange are based on the the outcomes from former EVS-GTR IWG, where the modifications are marked in bold for new or strikethrough for deleted characters.

The intent of this model regulation is to enhance the requirements of thermal propagation prescribed in the Global Technical Regulation No. 20 (ECE/TRANS/180/Add.20) with the view to implement robust and practicable certification procedure.

The numbering of paragraph in this document corresponds to those of 03 series of amendments to UN Regulation No.100. Technical aspects of this model regulation may be adopted also for other national regulations based on Global Technical Regulation No.20.

1. Scope

1

2

3

4

5

6 7

8

9

13

14 15

17

24

25

26 27

28 29

30

31

32

33 34

41

42

1.1.Part I: Safety requirements with respect to the electric power train of road
vehicles of categories M and N¹, with a maximum design speed exceeding 25
km/h, equipped with electric power train, excluding vehicles permanently
connected to the grid.

Part I of this regulation does not cover;

- (a) Post-crash safety requirements of road vehicles.
- (b) High voltage components and systems which are not galvanically connected to the high voltage bus of the electric power train.
- 101.2.Part II: Safety requirements with respect to the Rechargeable Electrical Energy11Storage System (REESS), of road vehicles of categories M and N equipped12with electric power train, excluding vehicles permanently connected to the grid.

Part II of this Regulation does not apply to a battery whose primary use is to supply power for starting the engine and/or lighting and/or other vehicle auxiliaries' systems..

16 **2. Definitions**

For the purpose of this Regulation the following definitions apply:

- 182.1."Active driving possible mode" means the vehicle mode when application of19pressure to the accelerator pedal (or activation of an equivalent control) or20release of the brake system will cause the electric power train to move the21vehicle.
- 22 2.2. "Aqueous electrolyte" means an electrolyte based on water solvent for the compounds (e.g. acids, bases) providing conducting ions after its dissociation.
 - 2.3. "*Automatic disconnect*" means a device that when triggered, conductively separates the electric energy sources from the rest of the high voltage circuit of the electric power train.
 - 2.4. "*Breakout harness*" means connector wires that are connected for testing purposes to the REESS on the traction side of the automatic disconnect
 - 2.5. "*Cell*" means a single encased electrochemical unit containing one positive and one negative terminals, which exhibits a voltage differential across its two terminals and used as rechargeable electrical energy storage device.
 - 2.6 "*Conductive connection*" means the connection using connectors to an external power supply when the Rechargeable Electrical Energy Storage System (REESS) is charged.
- 352.7."Connector" means the device that provides mechanical connection and
disconnection of high voltage electrical conductors to a suitable mating
component including its housing
- 382.8."Coupling system for charging the Rechargeable Electrical Energy Storage39System (REESS)" means the electrical circuit used for charging the REESS40from an external electric power supply including the vehicle inlet.
 - 2.9. "*C Rate*" of "*n C*" is defined as the constant current of the Tested-DeviceTested-Device, which takes 1/n hours to charge or discharge the Tested-

¹ As defined in the Consolidated Resolution on the Construction of Vehicles (R.E.3.), document ECE/TRANS/WP.29/78/Rev.6, para. 2 https://unece.org/transport/standards/transport/vehicle-regulations-wp29/resolutions

43 44		DeviceTested-Device between 0 per cent of the state of charge and 100 per cent of the state of charge.
45	2.10.	"Direct contact" means the contact of persons with high voltage live parts.
46 47	2.11.	" <i>Electric energy conversion system</i> " means a system (e.g. fuel cell) that generates and provides electric energy for electric propulsion.
48 49 50 51	2.12.	" <i>Electric power train</i> " means the electrical circuit which includes the traction motor(s), and may include the REESS, the electric energy conversion system, the electronic converters, the associated wiring harness and connectors, and the coupling system for charging the REESS.
52 53	2.13.	" <i>Electrical chassis</i> " means a set made of conductive parts electrically linked together, whose potential is taken as reference.
54 55	2.14.	" <i>Electrical circuit</i> " means an assembly of connected live parts which is designed to be electrically energized in normal operation.
56 57	2.15.	" <i>Electrical protection barrier</i> " means the part that provides protection against direct contact with the high voltage live parts.
58 59	2.16.	" <i>Electrolyte leakage</i> " means the escape of electrolyte from the REESS in the form of liquid
60 61	2.17.	" <i>Electronic converter</i> " means a device capable of controlling and/or converting electric power for electric propulsion.
62 63	2.18.	" <i>Enclosure</i> " means the part enclosing the internal units and providing protection against any direct contact.
64 65 66	2.19.	" <i>Explosion</i> " means the sudden release of energy sufficient to cause pressure waves and/or projectiles that may cause structural and/or physical damage to the surrounding of the Tested-Device.
67 68 69 70 71	2.20.	" <i>Exposed conductive part</i> " means the conductive part which can be touched under the provisions of the protection degree IPXXB, and which is not normally energized, but which can become electrically energized under isolation failure conditions. This includes parts under a cover that can be removed without using tools.
72 73	2.21.	" <i>External electric power supply</i> " means an alternating current (AC) or direct current (DC) electric power supply outside of the vehicle.
74 75	2.22.	" <i>Fire</i> " means the emission of flames from a Tested-Device. Sparks and arcing shall not be considered as flames.
76 77 78 79	2.23.	" <i>Flammable electrolyte</i> " means an electrolyte that contains substances classified as Class 3 "flammable liquid" under "UN Recommendations on the Transport of Dangerous Goods – Model Regulations (Revision 17 from June 2011), Volume I, Chapter 2.3" ²
80 81 82	2.24.	" <i>High Voltage</i> " means the classification of an electric component or circuit, if its working voltage is > 60 V and \leq 1500 V DC or > 30 V and \leq 1000 V AC root mean square (rms).
83 84 85 86 87	2.25.	" <i>High voltage bus</i> " means the electrical circuit, including the coupling system for charging the REESS that operates on high voltage. In case of electrical circuits, that are galvanically connected to each other and fulfilling the voltage condition specified in paragraph 2.42., only the components or parts of the electric circuit that operate on high voltage are classified as a high voltage bus.
88	2.26.	"Indirect contact" means the contact of persons with exposed conductive parts.

² www.unece.org/trans/danger/publi/unrec/rev17/17files_e.html

89 2.27. "*Live parts*" means the conductive part(s) intended to be electrically energized under normal operating conditions.

- 2.28. "*Luggage compartment*" means the space in the vehicle for luggage accommodation, bounded by the roof, hood, floor, side walls, as well as by the barrier and enclosure provided for protecting the occupants from direct contact with high voltage live parts, being separated from the passenger compartment by the front bulkhead or the rear bulk head.
- 962.29."Manufacturer" means the person or body who is responsible to the approval
authority for all aspects of the approval process and for ensuring conformity of
production. It is not essential that the person or body is directly involved in all
stages of the construction of the vehicle or component which is the subject of
the approval process.

1012.30."Non-aqueous electrolyte" means an electrolyte not based on water as the
solvent.

- 2.31. "*Normal operating conditions*" includes operating modes and conditions that can reasonably be encountered during typical operation of the vehicle including driving at legally posted speeds, parking and standing in traffic, as well as, charging using chargers that are compatible with the specific charging ports installed on the vehicle. It does not include conditions where the vehicle is damaged, either by a crash, road debris or vandalization, subjected to fire or water submersion, or in a state where service and or maintenance is needed or being performed.
 - 2.32. "*On-board isolation resistance monitoring system*" means the device which monitors the isolation resistance between the high voltage buses and the electrical chassis.
- 2.33. "*Open type traction battery*" means a liquid type battery requiring refilling with water and generating hydrogen gas released to the atmosphere.
- 2.34. "*Passenger compartment*" means the space for occupant accommodation, bounded by the roof, floor, side walls, doors, window glass, front bulkhead and rear bulkhead, or rear gate, as well as by the barriers and enclosures provided for protecting the occupants from direct contact with live parts.
- 2.35. "*Protection degree IPXXB*" means protection from contact with high voltage live parts provided by either an electrical protection barrier or an enclosure and tested using a Jointed Test Finger (IPXXB) as described in Annex 3.
- 1232.36."Protection degree IPXXD" means protection from contact with high voltage124live parts provided by either an electrical protection barrier or an enclosure and125tested using a Test Wire (IPXXD) as described in Annex 3.
 - 2.37. "*Rechargeable Electrical Energy Storage System (REESS)*" means the rechargeable energy storage system that provides electric energy for electrical propulsion.
 - A battery whose primary use is to supply power for starting the engine and/or lighting and/or other vehicle auxiliaries' systems is not considered as a REESS.
 - The REESS may include the necessary systems for physical support, thermal management, electronic controls and casing
- 1332.38."REESS subsystem" means any assembly of REESS components which stores134energy. A REESS subsystem may or may not include the entire management135system of the REESS.
- 1362.39."Rupture" means opening(s) through the casing of any functional cell assembly137created or enlarged by an event, large enough for a 12 mm diameter test finger138(IPXXB) to penetrate and make contact with live parts (see Annex 3).
- 1392.40."Service disconnect" means the device for deactivation of the electrical circuit140when conducting checks and services of the REESS, fuel cell stack, etc.

141 142	2.41.	"Solid insulator" means the insulating coating of wiring harnesses provided in order to cover and prevent the high voltage live parts from any direct contact	
143 144 145	2.42.	"Specific voltage condition" means the condition that the maximum voltage of a galvanically connected electrical circuit between a DC live part and any other live part (DC or AC) is \leq 30 V AC (rms) and \leq 60 V DC.	
146 147 148		and th	: When a DC live part of such an electrical circuit is connected to chassis e specific voltage condition applies, the maximum voltage between any art and the electrical chassis is ≤ 30 V AC (rms) and ≤ 60 V DC
149 150			2: For pulsating DC voltages (alternating voltages without change of ty) the DC threshold shall be applied.
151 152	2.43.		of Charge (SOC)" means the available electrical charge in a Tested- e expressed as a percentage of its rated capacity.
153 154	2.44.		<i>d-Device</i> " means either complete REESS or REESS subsystem that is sted to the tests prescribed by this Regulation.
155 156 157	2.45.	is sigr	<i>mal event</i> " means the condition when the temperature within the REESS nificantly higher (as defined by the manufacturer) than the maximum ing temperature.
158 159	2.46.		<i>mal runaway</i> " means an uncontrolled increase of cell temperature caused othermic reactions inside the cell.
160 161	2.47.		<i>mal propagation</i> " means the sequential occurrence of thermal runaway a REESS triggered by thermal runaway of a cell in that REESS.
162 163	2.48.		of REESS" means systems which do not differ significantly in such ial aspects as:
164		(a)	The manufacturer's trade name or mark;
165		(b)	The chemistry, capacity and physical dimensions of its cells;
166 167		(c)	The number of cells, the mode of connection of the cells and the physical support of the cells;
168		(d)	The construction, materials and physical dimensions of the casing and
169 170		(e)	The necessary ancillary devices for physical support, thermal management and electronic control.
171 172	2.49.		<i>cle connector</i> " means the device which is inserted into the vehicle inlet ply electric energy to the vehicle from an external electric power supply.
173 174 175	2.50.	which	<i>cle inlet</i> " means the device on the externally chargeable vehicle into the vehicle connector is inserted for the purpose of transferring electric y from an external electric power supply.
176	2.51.	"Vehic	cle type" means vehicles which do not differ in such essential aspects as:
177 178		(a)	Installation of the electric power train and the galvanically connected high voltage bus;
179 180		(b)	Nature and type of electric power train and the galvanically connected high voltage components.
181 182 183	2.52.		ing" means the release of excessive internal pressure from cell or REESS stem or REESS in a manner intended by design to preclude rupture or sion."
184 185 186 187 188	2.53.	mean- any co condit	<i>cing voltage</i> " means the highest value of an electrical circuit voltage root- square (rms), specified by the manufacturer, which may occur between onductive parts in open circuit conditions or under normal operating ion. If the electrical circuit is divided by galvanic isolation, the working re is defined for each divided circuit, respectively.

1905.Part I: Requirements of a vehicle with regard to191specific requirements for the electric power train

- 5.2. Rechargeable Electrical Energy Storage System (REESS)
- 1945.2.1.For a vehicle with a REESS, the requirement of either paragraph 5.2.1.1. or195paragraph 5.2.1.2. shall be satisfied.
 - 5.2.1.1. For a REESS which has been type approved in accordance with Part II of this series of Amendments to this Regulation, it shall be installed in accordance with the instructions provided by the manufacturer of the REESS, and in conformity with the description provided in Annex 1, Appendix 2 to this Regulation.
 - 5.2.1.2. The REESS including related vehicle components, systems and structure as applicable, shall comply with the respective requirements of paragraph 6. of this Regulation.
- 205 5.2.3. Warning in the event of failure in REESS

The vehicle shall provide a warning to the driver when the vehicle is in active driving possible mode in the event specified in paragraphs 6.13. to 6.15.

In case of optical warning, the tell-tale shall, when illuminated, be sufficiently bright to be visible to the driver under both daylight and night-time driving conditions, when the driver has adapted to the ambient roadway light conditions.

This tell-tale shall be activated as a check of lamp function either when the propulsion system is turned to the "On" position, or when the propulsion system is in a position between "On" and "Start" that is designated by the manufacturer as a check position. This requirement does not apply to the tell-tale or text shown in a common space.

2176.Part II: Requirements of a Rechargeable Electrical218Energy Storage System (REESS) with regard to its219safety

- 220 6.1. General
 - The procedures prescribed in Annex 9 of this Regulation shall be applied.
- 223 6.12. Management of gases emitted from REESS
 - 6.12.1. Under vehicle operation including the operation with a failure, the vehicle occupants shall not be exposed to any hazardous environment caused by emissions from REESS.
 - 6.12.2. Open-type traction batteries shall meet the requirements of paragraph 5.4. of this Regulation with regard to hydrogen emissions.
- 2296.12.3.For REESS other than open-type traction battery, the requirement of paragraph2306.12.1. is deemed to be satisfied, if all applicable requirements of the following231tests are met: paragraph 6.2. (vibration), paragraph 6.3. (thermal shock and232cycling), paragraph 6.6. (external short circuit protection), paragraph 6.7.

189

192

193

196

197

198

199 200

201

202 203

204

206

207

208 209

210

211 212

213

214 215

216

221

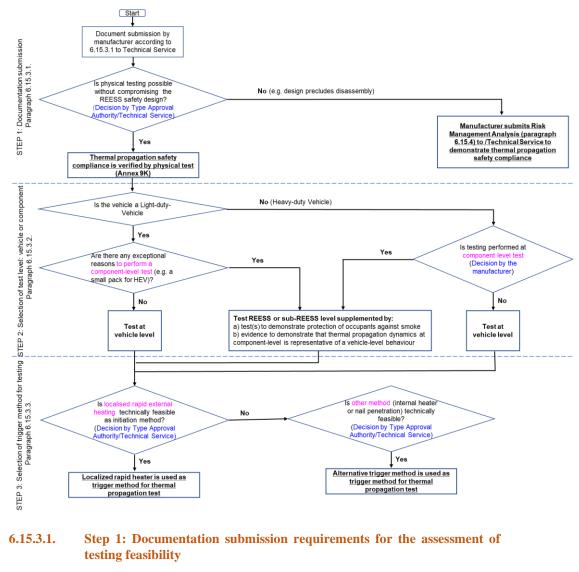
222

224

225 226

227

228



233 234		(overcharge protection), paragraph 6.8. (over-discharge protection), paragraph 6.9. (over-temperature protection) and paragraph 6.10. (overcurrent protection).
235 236	6.13.	Warning in the event of operational failure of vehicle controls that manage REESS safe operation.
237 238 239 240 241 242 243		The REESS or vehicle system shall provide a signal to activate the warning specified in paragraph 5.2.3. in the event of operational failure of the vehicle controls (e.g. input and output signals to the management system of REESS, sensors within REESS, etc.) that manage the safe operation of the REESS. REESS or vehicle manufacturer shall make available, at the request of the Technical Service with its necessity, the following documentation explaining safety performance of the system level or subsystem level of the vehicle:
244 245 246 247	6.13.1.	A system diagram that identifies all the vehicle controls that manage REESS operations. The diagram must identify what components are used to generate a warning due to operational failure of vehicle controls to conduct one or more basic operations.
248 249 250 251 252	6.13.2.	A written explanation describing the basic operation of the vehicle controls that manage REESS operation. The explanation must identify the components of the vehicle control system, provide description of their functions and capability to manage the REESS, and provide a logic diagram and description of conditions that would lead to triggering of the warning.
253	6.14.	Warning in the case of a thermal event within the REESS.
254 255 256 257 258 259		The REESS or vehicle system shall provide a signal to activate the warning specified in paragraph 5.2.3. in the case of a thermal event in the REESS (as specified by the manufacturer). REESS or vehicle manufacturer shall make available, at the request of the Technical Service with its necessity, the following documentation explaining safety performance of the system level or subsystem level of the vehicle:
260 261 262	6.14.1.	The parameters and associated threshold levels that are used to indicate a thermal event (e.g. temperature, temperature rise rate, SOC level, voltage drop, electrical current, etc.) to trigger the warning.
263 264	6.14.2.	A system diagram and written explanation describing the sensors and operation of the vehicle controls to manage the REESS in the event of a thermal event.
265	6.15.	Thermal propagation.
266 267 268 269 270 271		For a REESS containing flammable electrolyte, the vehicle occupants shall not be exposed to any hazardous environment caused by thermal propagation which is triggered by an internal short circuit leading to a single cell thermal runaway. To ensure this, the requirements of paragraphs 6.15.1. and 6.15.2. shall be satisfied in accordance with the verification procedure described in paragraph 5.4.12.4 . ³
272 273 274	6.15.1.	The REESS or vehicle system shall provide a signal to activate the advance warning indication in the event of a thermal propagation which is triggered by an internal short circuit leading to a single cell thermal runaway:
275 276		(a) To allow egress prior to the presence of a hazardous situation inside the passenger compartment; or
277 278		(b) 5 minutes prior to the presence of a hazardous situation inside the passenger compartment.
279 280		in the vehicle to allow egress or 5 minutes prior to the presence of a hazardous situation inside the passenger compartment caused by thermal propagation

³ The manufacturer will be accountable for the verity and integrity of documentation submitted, and assume full responsibility for the safety of occupants against adverse effects arising from thermal propagation caused by internal short circuit.

281 282 283 284 285 286 287 288		which is triggered by an internal short circuit leading to a single cell thermal runaway such as fire, explosion or smoke. This requirement is deemed to be satisfied if the thermal propagation does not lead to a hazardous situation for the vehicle occupants or if the single cell thermal runaway does not lead to thermal propagation in the REESS. REESS or vehicle manufacturer shall make available, at the request of the Technical Service with its necessity, the following documentation explaining safety performance of the system level or sub-system level of the vehicle:
289 290	6.15.1.1.	REESS or vehicle manufacturer shall make available the following documentation:
291 292	6.15.1. <mark>1.</mark> 1.	The parameters (for example, temperature, voltage or electrical current) which trigger the warning indication.
293	6.15.1. <mark>1.</mark> 2.	Description of the warning system.
294 295 296 297 298 299	6.15.2.	The REESS or vehicle system shall have functions or characteristics in the cell, or-REESS or vehicle intended to protect vehicle occupants (as described in paragraph 6.15.) in conditions caused by thermal propagation which is triggered by an internal short circuit leading to a single cell thermal runaway. REESS or vehicle manufacturers shall make available, at the request of the Technical Service with its necessity, the following documentation explaining
300		safety performance of the system level or sub-system level of the vehicle:
300 301	6.15.3.	safety performance of the system level or sub-system level of the vehicle: Thermal propagation verification process
	6.15.3.	
301 302 303 304	6.15.3.	Thermal propagation verification process Recognizing that there are different REESS and vehicle designs on the market, and to ensure the technical neutrality of this requirement, the thermal propagation verification process follows a multi-step approach

Figure 3 Flow-chart for the verification of thermal propagation safety compliance

The manufacturer shall provide technical documentation to enable the Type Approval Authority and Technical Services to judge if physical testing is feasible and to inform about instrumentation needed of the Tested-Device as well as the vehicle, if applicable, for testing.

- (a) A system diagram of all relevant physical systems and components;
- (b) A diagram showing the functional operation of the relevant systems and components, identifying all risk mitigation functions or characteristics;
- (c) For each identified risk mitigation function of characteristic implemented, the physical system or component which implements the function shall be identified and the operating strategy described; and
- (d) If applicable, recommendations on how to prepare and instrument the Tested-Device and the vehicle.

Relevant systems and components are those which contribute to protection of vehicle occupants from hazardous effects caused by thermal propagation triggered by a single cell thermal runaway.

342 343 344 345		physic by the	Type Approval Authority and Technical Services judges that al testing is not feasible based on the technical information provided manufacturer, Risk management analysis according to paragraph shall be performed.
346	6.15.3.2.	Step 2:	: Selection of test level
347 348 349 350		can on vehicle	th duty vehicles, vehicle testing is preferred. Component based test ly be selected if there are extraordinary circumstances that makes e testing inappropriate. The appropriate test level is determined by pe Approval Authority and Technical Services.
351 352			eavy duty vehicles, the manufacturer determines if testing shall be med on vehicle or component level.
353 354		Therm by:	al propagation testing on component level shall be supplemented
355 356			Additional test(s) to demonstrate that vehicle occupants are protected against emissions from the REESS; or
357 358			Evidence to demonstrate that thermal propagation dynamics at component-level is representative of a vehicle-level behaviour.
359 360 361		_	acement of the REESS in relation to the passenger compartment s effect on the risk of occupant exposure to the emissions shall be ered.
362	6.15.3.3.	Step 3	: Selection of trigger method
363 364		-	al testing shall be performed when deemed possible by the Type val Authority and Technical Services.
365 366 367 368 369		testing localiz fast he	zed fast external heater is the preferred trigger method for physical of thermal propagation safety performance. Alternative methods: ed internal heater or nail penetration, may be used if the localized ater trigger method is deemed inappropriate for the REESS design Type Approval Authority and Technical Services.
370 371			nethod descriptions for the respective trigger methods are found in raphs 6.4.1, 6.4.2 and 6.4.3.
372	6.15.3.4	Accept	tance criteria for physical thermal propagation test
373		During	g the test there shall be no evidence of:
374		(a)	Fire
375		(b)	Explosion
376 377			Hazardous conditions inside the passenger compartment during egress or 5 minutes after the activation of the warning indication
378 379 380		shall b	vidence of hazardous condition inside the occupant compartment e verified by visual inspection without disassembling any part of the -Device or the vehicle.
381	6.15.4.	Risk n	nanagement analysis method
382 383 384 385 386 387 388 389		reduct parkin and fo from v hardw 2022 a	anufacturer shall perform and document a risk assessment and risk ion analysis for all operational modes (e.g. active drive possible, ag and external charging modes). The risk analysis shall be holistic llow a systematic work process, taking on a top-down approach vehicle to battery system and/or subsystem level(s), including both are and software aspects, (see for example ISO 6469-1:2019/AMD nd ISO 26262 or equivalent standards for additional guidance). The product shall be comprehensive and transparent documentation
390			ning the safety performance of the vehicle systems in conditions

391 392		caused by thermal propagation which is triggered by an internal short circuit leading to a single cell thermal runaway.
		ch cuit leading to a single cen thermal runaway.
393		The manufacturer shall make available, at the request of the regulatory
394		or testing entity as applicable with its necessity, a high-level report
395		including essential data and a summary of important information from
396		the risk assessment and the risk reduction activities. The report structure
397		shall comprise a four-part structure with the elements described in
398		paragraphs 6.15.4.1., 6.15.4.2., 6.15.4.3. and 6.15.4.4. below.
399	6.15.4.1.	System analysis
400	01201121	The system analysis includes:
401		(a) A system diagram of all relevant physical systems and components;
402		(b) Description of systems/components relevant to single-cell thermal
402		runaway and thermal propagation due to internal short circuit and
403		their interoperability. Relevant systems and components are those
404 405		which contribute to protection of vehicle occupants from hazardous
405		effects caused by thermal propagation triggered by a single cell
400		
407 408		thermal runaway include but are not limited to REESS, sensors, thermal management system, battery management system, etc.;
409		(a) Description of advanced manning indication and anomating logic
409 410		(c) Description of advanced warning indication and operating logic; and
411		(d) Functional analyses identifying the conditions leading to single cell
412		thermal runaway, i.e. internal short circuit of the cell, and
413		allocating them to the corresponding components or functional
414		units or subsystems;
414	6.15.4.2.	Risk identification and mitigation
415	0.13.4.2.	
417		A risk reduction analysis using appropriate industry standard
41/		
		methodology (for guidance, see for example, IEC 61508, MIL-STD 882E,
418		ISO 26262, AIAG & VDA FMEA Handbook, fault analysis as in SAE
418 419		ISO 26262, AIAG & VDA FMEA Handbook, fault analysis as in SAE J2929, or similar), which documents the risk to vehicle occupants caused
418 419 420		ISO 26262, AIAG & VDA FMEA Handbook, fault analysis as in SAE J2929, or similar), which documents the risk to vehicle occupants caused by thermal propagation triggered by an internal short circuit leading to a
418 419 420 421		ISO 26262, AIAG & VDA FMEA Handbook, fault analysis as in SAE J2929, or similar), which documents the risk to vehicle occupants caused by thermal propagation triggered by an internal short circuit leading to a single cell thermal runaway and documents the reduction of risk resulting
418 419 420 421 422		ISO 26262, AIAG & VDA FMEA Handbook, fault analysis as in SAE J2929, or similar), which documents the risk to vehicle occupants caused by thermal propagation triggered by an internal short circuit leading to a single cell thermal runaway and documents the reduction of risk resulting from implementation of the identified risk mitigation functions or
418 419 420 421 422 423		ISO 26262, AIAG & VDA FMEA Handbook, fault analysis as in SAE J2929, or similar), which documents the risk to vehicle occupants caused by thermal propagation triggered by an internal short circuit leading to a single cell thermal runaway and documents the reduction of risk resulting from implementation of the identified risk mitigation functions or characteristics. The severity of the thermal event and the risk of
418 419 420 421 422 423 424		ISO 26262, AIAG & VDA FMEA Handbook, fault analysis as in SAE J2929, or similar), which documents the risk to vehicle occupants caused by thermal propagation triggered by an internal short circuit leading to a single cell thermal runaway and documents the reduction of risk resulting from implementation of the identified risk mitigation functions or characteristics. The severity of the thermal event and the risk of propagation to adjacent cells in the battery pack shall be determined.
418 419 420 421 422 423 424 425		ISO 26262, AIAG & VDA FMEA Handbook, fault analysis as in SAE J2929, or similar), which documents the risk to vehicle occupants caused by thermal propagation triggered by an internal short circuit leading to a single cell thermal runaway and documents the reduction of risk resulting from implementation of the identified risk mitigation functions or characteristics. The severity of the thermal event and the risk of propagation to adjacent cells in the battery pack shall be determined. The risk identification and mitigation analysis shall include:
418 419 420 421 422 423 424 425 426		ISO 26262, AIAG & VDA FMEA Handbook, fault analysis as in SAE J2929, or similar), which documents the risk to vehicle occupants caused by thermal propagation triggered by an internal short circuit leading to a single cell thermal runaway and documents the reduction of risk resulting from implementation of the identified risk mitigation functions or characteristics. The severity of the thermal event and the risk of propagation to adjacent cells in the battery pack shall be determined. The risk identification and mitigation analysis shall include: (a) Risk mitigation by design;
418 419 420 421 422 423 424 425 426 427		 ISO 26262, AIAG & VDA FMEA Handbook, fault analysis as in SAE J2929, or similar), which documents the risk to vehicle occupants caused by thermal propagation triggered by an internal short circuit leading to a single cell thermal runaway and documents the reduction of risk resulting from implementation of the identified risk mitigation functions or characteristics. The severity of the thermal event and the risk of propagation to adjacent cells in the battery pack shall be determined. The risk identification and mitigation analysis shall include: (a) Risk mitigation by design; (b) Risk mitigation by manufacturing control; and
418 419 420 421 422 423 424 425 426 427 428		 ISO 26262, AIAG & VDA FMEA Handbook, fault analysis as in SAE J2929, or similar), which documents the risk to vehicle occupants caused by thermal propagation triggered by an internal short circuit leading to a single cell thermal runaway and documents the reduction of risk resulting from implementation of the identified risk mitigation functions or characteristics. The severity of the thermal event and the risk of propagation to adjacent cells in the battery pack shall be determined. The risk identification and mitigation analysis shall include: (a) Risk mitigation by design; (b) Risk mitigation by manufacturing control; and (c) Risk mitigation by other means;
418 419 420 421 422 423 424 425 426 427 428 429		 ISO 26262, AIAG & VDA FMEA Handbook, fault analysis as in SAE J2929, or similar), which documents the risk to vehicle occupants caused by thermal propagation triggered by an internal short circuit leading to a single cell thermal runaway and documents the reduction of risk resulting from implementation of the identified risk mitigation functions or characteristics. The severity of the thermal event and the risk of propagation to adjacent cells in the battery pack shall be determined. The risk identification and mitigation analysis shall include: (a) Risk mitigation by design; (b) Risk mitigation by manufacturing control; and (c) Risk mitigation by other means; The risk analysis shall also include information about and justify any
418 419 420 421 422 423 424 425 426 427 428 429 430		 ISO 26262, AIAG & VDA FMEA Handbook, fault analysis as in SAE J2929, or similar), which documents the risk to vehicle occupants caused by thermal propagation triggered by an internal short circuit leading to a single cell thermal runaway and documents the reduction of risk resulting from implementation of the identified risk mitigation functions or characteristics. The severity of the thermal event and the risk of propagation to adjacent cells in the battery pack shall be determined. The risk identification and mitigation analysis shall include: (a) Risk mitigation by design; (b) Risk mitigation by manufacturing control; and (c) Risk mitigation by other means; The risk analysis shall also include information about and justify any assumptions made on system performance characteristics and properties,
418 419 420 421 422 423 424 425 426 427 428 429 430 431		 ISO 26262, AIAG & VDA FMEA Handbook, fault analysis as in SAE J2929, or similar), which documents the risk to vehicle occupants caused by thermal propagation triggered by an internal short circuit leading to a single cell thermal runaway and documents the reduction of risk resulting from implementation of the identified risk mitigation functions or characteristics. The severity of the thermal event and the risk of propagation to adjacent cells in the battery pack shall be determined. The risk identification and mitigation analysis shall include: (a) Risk mitigation by design; (b) Risk mitigation by manufacturing control; and (c) Risk mitigation by other means; The risk analysis shall also include information about and justify any assumptions made on system performance characteristics and properties, model behaviour or relative relevance and likelihood of specified risk
418 419 420 421 422 423 424 425 426 427 428 429 430		 ISO 26262, AIAG & VDA FMEA Handbook, fault analysis as in SAE J2929, or similar), which documents the risk to vehicle occupants caused by thermal propagation triggered by an internal short circuit leading to a single cell thermal runaway and documents the reduction of risk resulting from implementation of the identified risk mitigation functions or characteristics. The severity of the thermal event and the risk of propagation to adjacent cells in the battery pack shall be determined. The risk identification and mitigation analysis shall include: (a) Risk mitigation by design; (b) Risk mitigation by manufacturing control; and (c) Risk mitigation by other means; The risk analysis shall also include information about and justify any assumptions made on system performance characteristics and properties,
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433		 ISO 26262, AIAG & VDA FMEA Handbook, fault analysis as in SAE J2929, or similar), which documents the risk to vehicle occupants caused by thermal propagation triggered by an internal short circuit leading to a single cell thermal runaway and documents the reduction of risk resulting from implementation of the identified risk mitigation functions or characteristics. The severity of the thermal event and the risk of propagation to adjacent cells in the battery pack shall be determined. The risk identification and mitigation analysis shall include: (a) Risk mitigation by design; (b) Risk mitigation by manufacturing control; and (c) Risk mitigation by other means; The risk analysis shall also include information about and justify any assumptions made on system performance characteristics and properties, model behaviour or relative relevance and likelihood of specified risk scenarios.
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434	(154)	 ISO 26262, AIAG & VDA FMEA Handbook, fault analysis as in SAE J2929, or similar), which documents the risk to vehicle occupants caused by thermal propagation triggered by an internal short circuit leading to a single cell thermal runaway and documents the reduction of risk resulting from implementation of the identified risk mitigation functions or characteristics. The severity of the thermal event and the risk of propagation to adjacent cells in the battery pack shall be determined. The risk identification and mitigation analysis shall include: (a) Risk mitigation by design; (b) Risk mitigation by manufacturing control; and (c) Risk mitigation by other means; The risk analysis shall also include information about and justify any assumptions made on system performance characteristics and properties, model behaviour or relative relevance and likelihood of specified risk scenarios.
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435	6.15.4.3.	 ISO 26262, AIAG & VDA FMEA Handbook, fault analysis as in SAE J2929, or similar), which documents the risk to vehicle occupants caused by thermal propagation triggered by an internal short circuit leading to a single cell thermal runaway and documents the reduction of risk resulting from implementation of the identified risk mitigation functions or characteristics. The severity of the thermal event and the risk of propagation to adjacent cells in the battery pack shall be determined. The risk identification and mitigation analysis shall include: (a) Risk mitigation by design; (b) Risk mitigation by manufacturing control; and (c) Risk mitigation by other means; The risk analysis shall also include information about and justify any assumptions made on system performance characteristics and properties, model behaviour or relative relevance and likelihood of specified risk scenarios. The risk assessment is limited to the operational design domain of the REESS. Risk mitigation effectiveness – validation & verification
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436	6.15.4.3.	 ISO 26262, AIAG & VDA FMEA Handbook, fault analysis as in SAE J2929, or similar), which documents the risk to vehicle occupants caused by thermal propagation triggered by an internal short circuit leading to a single cell thermal runaway and documents the reduction of risk resulting from implementation of the identified risk mitigation functions or characteristics. The severity of the thermal event and the risk of propagation to adjacent cells in the battery pack shall be determined. The risk identification and mitigation analysis shall include: (a) Risk mitigation by design; (b) Risk mitigation by manufacturing control; and (c) Risk mitigation by other means; The risk analysis shall also include information about and justify any assumptions made on system performance characteristics and properties, model behaviour or relative relevance and likelihood of specified risk scenarios. The risk assessment is limited to the operational design domain of the REESS. Risk mitigation effectiveness – validation & verification
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437	6.15.4.3.	 ISO 26262, AIAG & VDA FMEA Handbook, fault analysis as in SAE J2929, or similar), which documents the risk to vehicle occupants caused by thermal propagation triggered by an internal short circuit leading to a single cell thermal runaway and documents the reduction of risk resulting from implementation of the identified risk mitigation functions or characteristics. The severity of the thermal event and the risk of propagation to adjacent cells in the battery pack shall be determined. The risk identification and mitigation analysis shall include: (a) Risk mitigation by design; (b) Risk mitigation by manufacturing control; and (c) Risk mitigation by other means; The risk analysis shall also include information about and justify any assumptions made on system performance characteristics and properties, model behaviour or relative relevance and likelihood of specified risk scenarios. The risk assessment is limited to the operational design domain of the REESS. Risk mitigation effectiveness – validation & verification The effectiveness of each of the risk reduction measure shall be analysed and evaluated. Effectiveness may be analysed by testing, analysis,
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438	6.15.4.3.	 ISO 26262, AIAG & VDA FMEA Handbook, fault analysis as in SAE J2929, or similar), which documents the risk to vehicle occupants caused by thermal propagation triggered by an internal short circuit leading to a single cell thermal runaway and documents the reduction of risk resulting from implementation of the identified risk mitigation functions or characteristics. The severity of the thermal event and the risk of propagation to adjacent cells in the battery pack shall be determined. The risk identification and mitigation analysis shall include: (a) Risk mitigation by design; (b) Risk mitigation by manufacturing control; and (c) Risk mitigation by other means; The risk analysis shall also include information about and justify any assumptions made on system performance characteristics and properties, model behaviour or relative relevance and likelihood of specified risk scenarios. The risk assessment is limited to the operational design domain of the REESS. Risk mitigation effectiveness – validation & verification The effectiveness of each of the risk reduction measure shall be analysed and evaluated. Effectiveness may be analysed by testing, analysis, simulation, models, reference to scientific papers, field data and/or other
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439	6.15.4.3.	 ISO 26262, AIAG & VDA FMEA Handbook, fault analysis as in SAE J2929, or similar), which documents the risk to vehicle occupants caused by thermal propagation triggered by an internal short circuit leading to a single cell thermal runaway and documents the reduction of risk resulting from implementation of the identified risk mitigation functions or characteristics. The severity of the thermal event and the risk of propagation to adjacent cells in the battery pack shall be determined. The risk identification and mitigation analysis shall include: (a) Risk mitigation by design; (b) Risk mitigation by design; (c) Risk mitigation by other means; The risk analysis shall also include information about and justify any assumptions made on system performance characteristics and properties, model behaviour or relative relevance and likelihood of specified risk scenarios. The risk assessment is limited to the operational design domain of the REESS. Risk mitigation effectiveness – validation & verification The effectiveness of each of the risk reduction measure shall be analysed and evaluated. Effectiveness may be analysed by testing, analysis, simulation, models, reference to scientific papers, field data and/or other appropriate methods, either singly or in combination. Effectiveness
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438	6.15.4.3.	 ISO 26262, AIAG & VDA FMEA Handbook, fault analysis as in SAE J2929, or similar), which documents the risk to vehicle occupants caused by thermal propagation triggered by an internal short circuit leading to a single cell thermal runaway and documents the reduction of risk resulting from implementation of the identified risk mitigation functions or characteristics. The severity of the thermal event and the risk of propagation to adjacent cells in the battery pack shall be determined. The risk identification and mitigation analysis shall include: (a) Risk mitigation by design; (b) Risk mitigation by manufacturing control; and (c) Risk mitigation by other means; The risk analysis shall also include information about and justify any assumptions made on system performance characteristics and properties, model behaviour or relative relevance and likelihood of specified risk scenarios. The risk assessment is limited to the operational design domain of the REESS. Risk mitigation effectiveness – validation & verification The effectiveness of each of the risk reduction measure shall be analysed and evaluated. Effectiveness may be analysed by testing, analysis, simulation, models, reference to scientific papers, field data and/or other

442	6.15.4.3.1.	Tests and verification methods
443		Test and verification methods used for unit testing, implementation
444		testing and validation shall be documented, clearly identifying which
445		safety functionalities are addressed with the respective methods.
446		Recognized industry standard tests, for example ISO, IEC, SAE or
440		• • • • • • • • • • • • • • • • • • •
		equivalent, should be used when available and appropriate for the testing
448		purposes. In the absence of appropriate industry standard methods and
449		tests, the manufacturer shall design test methods and verification
450		techniques that are feasible to verify component and/or system
451		performance as required to verify and validate the effectiveness of the risk
452		mitigation strategy. Any such methods used shall be explicitly documented,
453		including an explanation of what property, capability or attribute that is
454		tested and the suitability of the method to generate the data required, as
455		well as the rationale for why the method is appropriate.
1.5.6	(1= 1 2 2	
456	6.15.4.3.2.	Data sources and quality requirements
457		The data set shall evaluate performance of the components and functional
458		units that have been identified in the allocation process. The relevance and
459		appropriateness of the data shall be described and justified. Major
460		uncertainty factors shall be identified and quantified as far as possible.
461		Data can comprise of technical specifications and verifying test reports
462		from suppliers and/or manufacturers, mathematical simulations from
463		theoretical or empirical system models, scientific reports and publications,
464		as wells as field data.
404		as wells as held data.
465		All relevant results available shall be gathered and consolidated to verify
466		consistency of the results from different data sources and to establish the
467		reliability of the results obtained. The sources of externally derived data
468		shall be identified.
469		A completeness check shall be conducted so as to ensure that all relevant
470		information and data needed for the interpretation are available and
471		complete.
472		A sensitivity check shall be conducted to evaluate the reliability of the final
473		results and the conclusions by determining how they are affected by
474		uncertainties in the data, allocation methods or assumptions made about
475		the REESS.
476	6.15.4.4.	Conclusions
177		(a) The concluding next of the report shall comprise a brief summer
477		(a) The concluding part of the report shall comprise a brief summary
478		of the major results of the risk reduction analysis and a statement
479		that the requirements in paragraphs 6.15.1. and 6.15.2. are satisfied,
480		including: The methods used are scientifically and technically valid
481		for the scope of the risk reduction analysis;
482		(b) The data used are appropriate and reasonable in relation to the
483		intention of the risk reduction analysis;
484		(c) The interpretations are relevant and reflect the assumptions made
485		and the limitations identified for the study;
486		This part may be in the form of an internal or external critical review
487		report, if the manufacturer has such a process in place.
488	6.15.5.	REESS/Vehicle family for verification of thermal propagation
489		
		REESS/vehicles having the same characteristics with respect to their
490		evaluation on the criteria below may be grouped into REESS/vehicle
491		families for the purpose of compliance verification of the thermal
492		propagation protection.
493	6.15.5.1.	REESS family criteria

494 495		REESSs that are substantially similar with respect to the following elements may consist of the same REESS family:
496		(a) The chemistry, capacity and physical dimensions of its cells;
497		(b) REESS design influencing the thermal propagation protection;
498 499		(c) Battery Management System (BMS) (with regards to thermal propagation protection);
500 501		(d) Operation strategy of all components influencing the thermal propagation protection;
502		(e) Venting strategy
503 504 505		At the request of the manufacturer, with appropriate technical justification, and, with the approval of the technical service, if applicable, the manufacturer may deviate from the above criteria for families.
506	6.15.5.2.	Vehicle family criteria for vehicles of categories \mathbf{M}_1 and \mathbf{N}_1
507 508		Vehicles that are substantially similar with respect to the following elements may consist of the same family:
509		(a) REESS mounting method and position;
510 511		(b) REESS mechanical protection, such as REESS casing and/or chassis structures around the REESS
512		(c) REESS venting strategy;
513		(d) REESS clearance with vehicle body and floor;
514		(e) REESS family
515		At the request of the manufacturer, with appropriate technical
516 517		justification, and, with the approval of the technical service, if applicable, the manufacturer may deviate from the above criteria for families.
518	6.15.5.3.	Vehicle family criteria or vehicles of categories M2, M3, N2 and N3
519 520 521		"Vehicle family" means a category of power-driven vehicles which do not differ in such essential respects, in so far as they have an adverse effect on the result of the thermal propagation test prescribed in this Regulation:
522 523		(a) REESS location in a truck, regardless of application fall broadly into the following;
524 525		(i) Under body: outside and/or inside frame rails, left or right hand side
526		(ii) Under cab
527		(iii) Behind cab
528		(iv) Any combination of the above
529		or
530 531		(b) REESS location in a bus, regardless of application fall broadly into the following;
532		(i) Under floor
533		(ii) On roof
534		(iii) ''Engine'' compartment
535		(iv) Any combination of the above
536		At the request of the manufacturer, with appropriate technical
537 538		justification, and, with the approval of the technical service, if applicable, the manufacturer may deviate from the above criteria for families.
		•

539 540 541 542 543 544 545	6.15.2.1.	A risk reduction analysis using appropriate industry standard methodology (for example, IEC 61508, MIL STD 882E, ISO 26262, AIAG DFMEA, fault analysis as in SAE J2929, or similar), which documents the risk to vehicle occupants caused by thermal propagation which is triggered by an internal short circuit leading to a single cell thermal runaway and documents the reduction of risk resulting from implementation of the identified risk mitigation functions or characteristics.
546 547 548 549	6.15.2.2.	A system diagram of all relevant physical systems and components. Relevant systems and components are those which contribute to protection of vehicle occupants from hazardous effects caused by thermal propagation triggered by a single cell thermal runaway.
550 551	6.15.2.3.	A diagram showing the functional operation of the relevant systems and components, identifying all risk mitigation functions or characteristics.
552	6.15.2.4.	For each identified risk mitigation function or characteristic:
553	6.15.2.4.1.	A description of its operation strategy;
554 555	6.15.2.4.2.	Identification of the physical system or component which implements the function;
556 557 558	6.15.2.4.3.	One or more of the following engineering documents relevant to the manufacturers design which demonstrates the effectiveness of the risk mitigation function:
559 560		(a) Tests performed including procedure used and conditions and resulting data;
561		(b) Analysis or validated simulation methodology and resulting data.
562		

563 Annex 9

REESS test procedures

566 Annex 9 - Appendix 1

567	Procedure for conducting a standard cycle			
568 569	A standard cycle shall start with a standard discharge followed by a standard charge. The standard cycle shall be conducted at an ambient temperature of 20 ± 10 °C.			
570	Standard discharge:			
571 572 573 574	Discharge rate:	The discharge procedure including termination criteria shall be defined by the manufacturer. If not specified, then it shall be a discharge with 1C current for a complete REESS and REESS subsystems.		
575	Discharge limit (end voltage):	Specified by the manufacturer		
576 577	For a complete vehicle, discharge procedure using a dynamometer shall be defined by the manufacturer. Discharge termination will be according to vehicle controls.			
578	Rest period after discharge:	Minimum 15 min		
579	Standard charge:			
580 581 582 583	a charge with C/3 current. Cha	Fined by the manufacturer. If not specified, then it shall be arging is continued until normally terminated. Charge paragraph 2. of Annex 9, Appendix 2 for REESS or REESS		
584 585 586 587 588	external electric power supply sha that can be charged by on-board	e charged by an external source, charge procedure using an all be defined by the manufacturer. For a complete vehicle energy sources, a charge procedure using a dynamometer cturer. Charge termination will be according to vehicle		
589				
590				

591 Annex 9 – Appendix 2

592	Proce	dure for SOC adjustment
593 594	1.	The adjustment of SOC shall be conducted at an ambient temperature of 20 ± 10 °C for vehicle-based tests and 22 ± 5 °C for component-based tests.
595 596 597 598	2.	The SOC of the Tested-Device shall be adjusted according to one of the following procedures as applicable. Where different charging procedures are possible, the REESS shall be charged using the procedure which yields the highest SOC:
599 600 601 602		 (a) For a vehicle with a REESS designed to be externally charged, the REESS shall be charged to the highest SOC in accordance with the procedure specified by the manufacturer for normal operation until the charging process is normally terminated;
603 604 605 606 607		(b) For a vehicle with a REESS designed to be charged only by an energy source on the vehicle, the REESS shall be charged to the highest SOC which is achievable with normal operation of the vehicle. The manufacturer shall advise on the vehicle operation mode to achieve this SOC;
608 609 610 611 612 613 614 615 616 617 618		(c) In case that the REESS or REESS subsystem is used as the Tested-Device, the Tested-Device shall be charged to the highest SOC in accordance with the procedure specified by the manufacturer for normal use operation until the charging process is normally terminated. Procedures specified by the manufacturer for manufacturing, service or maintenance may be considered as appropriate if they achieve an equivalent SOC as for that under normal operating conditions. In case the Tested-Device does not control SOC by itself, the SOC shall be charged to not less than 95 per cent of the maximum normal operating SOC defined by the manufacturer for the specific configuration of the Tested-Device.
 619 620 621 622 623 624 625 	3.	When the vehicle or REESS subsystem is tested, the SOC shall be no less than 95 per cent of the SOC according to paragraphs 1. and 2. above for REESS designed to be externally charged and shall be no less than 90 per cent of SOC according to paragraphs 1. and 2. above for REESS designed to be charged only by an energy source on the vehicle. The SOC will be confirmed by a method provided by the manufacturer.

Annex 9K

627	Therma	al pro	pagation test
628	1.	Purp	ose
629		The	purpose of the thermal propagation test is to ensure the occupant
630			y in a vehicle in case an internal short circuit leading to a single-cell
631			nal runaway occurs in the battery system.
632	2.	Insta	Illations
633		This	test shall be conducted at the vehicle level or using the complete
634		REE	SS or REESS subsystem(s). The appropriate test level is determined
635		by tl	he Type Approval Authority and Technical Services based on the
636		outco	ome of the thermal propagation verification process described in
637			graph 6.15.3.
638	3.	Gene	eral test conditions
639		The f	following conditions shall apply to the test
640	3.1.	Envi	ronmental conditions
641		(a)	At the beginning of the test, the REESS temperature shall be
642			maintained between 18 °C to maximum permissible operating
643			temperature, defined by the manufacturer;
644		(b)	The test shall be conducted either indoors or outdoors. In case of
645			outdoor testing there shall be no precipitation for the duration of
646			the test. Immediately prior to the test commencing, wind speed
647			shall be measured at a location which is no more than 5 m from the
648			Tested-Device and the average wind speed over 10 min shall be less
649			than 28 km/h. It shall be ensured that the results are not affected
650			by gusts of wind. Gusts shall not exceed 36 km/h when measured
651			over a period of 20 s. Test set up should consider the impact of
652			features such as shielding screens or walls which may create
653			excessive funneling affects during test execution;
654		(c)	The test shall be carried out at a relative humidity of 10% to 90%.
655	3.2.	Teste	ed-Device
656		(a)	Required modifications shall be kept to a minimum compared to
657			the original un-modified Tested-Device. Any manipulation of
658			REESS components, such as mechanical and thermal barriers,
659			cooling plates/channels, electrical connections, and cell to cell
660			spacing shall be documented and rationalized as to why such
661			changes do not result in significant change to performance. The
662			original sealing capability of the REESS shall not be compromised
663			through instrumentation and any venting shall be through pre-
664			existing seals. All components and features that are required for
665			the functioning of the Tested-Device and safety related features e.g.
666			cell connecting busbars, tab welding, BMS software shall be
667			according to their production specification;
668		(b)	At the beginning of the test, the state of charge (SOC) shall be
669			adjusted according to the procedure defined in Annex 9- Appendix
670			1 to this Regulation;
671		(c)	At the beginning of and, as long as possible, during the test, all
672			necessary function of the Tested-Device shall be operational. The
673			Tested-Device shall be representative of the REESS when installed
674			in a vehicle that is "on" and set in "parked" mode. The defined
675			thermal management/safety strategy and the battery management

676			system used within the REESS shall be fully operational. The
677			coolant flow could be null or active depending on the BMS. The
678			native cooling strategy (if installed), BMS and any other battery
679			control systems, which are necessary for the test, shall be
680			operational for as long as possible during the test.
681	3.3.	Initia	tion cell
682		In th	e field, a single cell thermal runaway may occur in any cell location
683			n the REESS. For the test, the initiation cell selection shall consider
684			umber of adjacent cells, cell packaging, and the distance between
685 686			in proximity to the potential initiation cell as well as the practicality tiation.
687			
688		-	cell that meets the requirements of paragraphs 3.1 and 3.2 above can lected as the target cell.
689	3.3.1.		llation of test equipment shall not compromise the functionality of
690	3.3.1.		REESS. The installation shall minimize modification to thermal
691			ators and structure and shall not:
692		(a)	Disable or modify the thermal management system;
693		(b)	Disable or affect the functionality of the BMS;
694		(c)	Change pack gas flow and permeability, both internal and exit
695			paths.
696	3.3.2.	A cel	l shall be selected that represents severe conditions for generating a
697		poter	tially hazardous condition in case of a thermal runaway:
698		(a)	A high level of heat transfer to at least one adjacent cell (e.g.
699			thinnest spacers/gaps/barriers or vent direction towards an
700			adjacent cell);
701		(b)	Subject to (a), few heat sinks and non-productive thermal pathways
702			(e.g. edge cell with few adjacent cells and/or with large adjacent air
703			space);
704		(c)	Other criteria known be the manufacturer to reflect a
705			condition/location which may have greater potential to lead to a
706			hazardous condition.
707	4.	Reco	rded data and measurements
708	4.1.		following information shall be recorded during the test and during
709			bservation period. All data measurement systems shall be referenced
710		to the	e same starting time.
711		(a)	Identification of the test method, including the trigger method, and
712			a description of the test set-up;
713		(b)	Test conditions (e.g. environmental conditions, SOC, and other pre-
714			conditioning parameters);
715		(c)	Temperature of the initiation cell;
716		(d)	Voltage of the initiation cell during the thermal runaway triggering
717			procedure;
718		(e)	Temperature of one adjacent cell (if possible);
719		(f)	Independent voltage measurement of the Tested-Device as a
720			function of time and, if possible, include the BMS pack voltage for
721			comparison;
722		(g)	Video and audio recording, including indication of a time stamp of
723			any observable system state change during the test (e,g, initiation

724 725		cell thermal runaway/venting, thermal propagation to adjacent cell(s), smoke, fire/flame, explosion, etc);
726 727		(h) Condition of the Tested-Device and/or vehicle at the end of the test, supported by video or photographs (before and after test);
728 729		(i) If possible, surface temperature of an adjacent module, if applicable, to observe propagation between modules;
730 731		(j) If the test is performed on vehicle level, the time stamp of warning indications or alarms to occupants.
732	5	Detection of thermal runaway
733	5.1.	Main Criteria
734 735 736		Thermal runaway can be detected by the following conditions (The energy density of a cell is calculated according to IEC 62660-1:2018, clause 7.6.3.1):
737 738 739	5.1.1.	For battery cells with an energy density of less than 130 Wh/kg, evidence of occurrence for thermal runaway during propagation test is provided if one of the following sets of criteria is met and last more than 3 s:
740 741 742		(a) temperature rise dT/dt >1 K/s and temperature exceeding the thermal runaway onset temperature determined by the cell manufacturer; or
743 744 745		(b) temperature exceeding the thermal runaway onset temperature determined by the cell manufacturer with a rapid and distinct voltage drop; or
746 747 748 749		(c) temperature exceeding the thermal runaway onset temperature determined by the cell manufacturer with venting gas or smoke release and at least one of supplementary criteria listed in paragraph 5.2. below; or
750 751		(d) temperature rise dT/dt > 1 K/s and venting gas or smoke release and rapid and distinct voltage drop.
752 753 754 755	5.1.2.	For battery cells with an energy density equal to or greater than 130 Wh/kg, evidence of occurrence for thermal runaway during propagation test is provided if one of the following sets of criteria is met and last more than 0,5 s:
756 757 758		(a) temperature rise dT/dt >15 K/s and temperature exceeding the thermal runaway onset temperature determined by the cell manufacturer; or
759 760 761		(b) temperature exceeding the thermal runaway onset temperature determined by the cell manufacturer with a rapid and distinct voltage drop; or
762 763 764		(c) temperature exceeding the thermal runaway onset temperature determined by the cell manufacturer and at least one of the supplementary criteria below; or
765 766		(d) temperature rise dT/dt > 15 K/s with venting gas or smoke release and a rapid and distinct voltage drop.
767	5.2.	Supplementary criteria
768 769		The following indicators can be considered as supportive evidence of the occurrence of thermal runaway due to the test trigger method:
770 771		 (a) dP/dT ≥0.01 bar/s of the measured pressure in the battery pack for at least 1 s;
772		(b) Occurrence of ejected solid material outside of the battery pack;

- (c) Failure of the BMS or signal faults (if the BMS is still active). Logged faults in the BMS shall be analysed.
- 5.3. (Placeholder) Criteria for determining no thermal runaway

In the case a cell within the REESS cannot be brought to thermal runaway, either because the cell chemistry is intrinsically safe or the REESS design effectively prevents single-cell thermal runaway to occur, the thermal propagation test shall be considered valid provided that the two consecutive tests using at least two alternative cell trigger methods in section 6.4 has failed to initiate thermal runaway in the initiation cell.

782 4. Trigger methods to initiate thermal runaway

The appropriate trigger method to initiate thermal runaway in the initiation cell is determined by the Type Approval Authority and Technical Services based on the outcome of the thermal propagation verification process described in paragraph 6.15.3.

The initiation method shall not affect the adjacent cell(s) such that they exceed the extremities of their operating or storage specifications (whichever is the more extreme) for the cell. Appropriate methods may be used to isolate the adjacent cell(s), provided that the REESS original functionality is not impeded.

Localized fast external heater (Annex 9K, Appendix 1) is the preferred trigger method. If this method is not suitable, optional trigger methods that can be selected are:

- (a) Internal localized heater (Annex 9K, Appendix 2);
- (b) Nail penetration (Annex 9K, Appendix 3).

Pre-testing procedures, for example to identify appropriate thermal runaway initiation trigger parameters for the Tested-Device, are not part of the homologation process and may be provided by the manufacturer upon request and subject to availability.

801

773

774

775

776

777

778

779

780

781

783

784

785

786

787

788 789

790

791

792

793

794

795

796

797

798 799

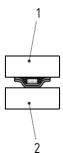
802 Annex 9K – Appendix 1

803 Thermal runaway initiation method with localized fast external heater

- 804 **1. Preparation of Tested-Device**
- 8051.1.The feedthrough installation of the chosen heating element should only
modify the REESS by permitting electrical and thermocouple connections
to the heating element. These connections shall provide greater seal
integrity than the other connectors in the REESS.
- 8091.2.The chosen heating element shall be set to avoid contact to any REESS810assembly surface except for the initiation cell. Intimate thermal contact811between the heating element and the initiation cell surface is important812for the successful application of this method. Thermal contact between the813heating element and initiation cell may be improved through various814methods (avoiding air gaps, addition of a heat transfer paste and applying815pressure, which should be maintained throughout the test).
- 8161.3.A sample of potential heater application methods are shown in Figure 1817and the applied method is dependent on the REESS or REESS subsystem818design. Maintain a contact pressure for the heating element on the819initiation cell during the test to ensure contact and optimal heat transfer,820see Figure 1.

821 Figure 1

822Methods to apply pressure on the heating element to maintain heating element contact823to initiation cell throughout the test for different cell types.


824

(a) **REESS** with large spacing between cells

825 826

(b) center cell fixed spacing (e.g. prismatic cells

(c) center cell compressed modules (e.g. pouch cells)

	1 /
↓↓	↓ /↓↓↓
† †	↑ ↑ ↑ ↑ 2

829		2
830		1 target cell
831		2 adjacent cell
832		4 heating element
833		5 heat transfer paste
834		6 ceramic paper
835		7 wire or high-temperature tape
836		
837	1.5.	For implementation in vehicle level tests, the vehicle should be agnostic to
838		the insertion of this initiation method into the REESS, any pass required
839		through the vehicle body should be minimized.
840	2.	Heater element selection guide
841	2.1.	The trigger method applies a high-powered heat pulse, locally, to the
842		external surface of the initiation cell. The successful implementation of the
843		method requires the application of sufficient power to the chosen heating
844		element but it shall also not apply so much power that there is a premature
845		heating element failure nor a side wall failure of the initiation cell prior to
846		thermal runaway.
847	2.2.	The heating device should be a resistive heating element, or other suitable
848		heating device/technology capable of delivering the target parameters.
849		Target parameters for the heating element are listed in Table 1.

Table 1

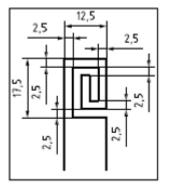
850

851

Heater de	evice selection	guide: Target	parameters
-----------	-----------------	---------------	------------

Parameter	Value	Rationale
Heater device material	Nickel-chrome with an isolating barrier or another suitable resistive heating material	Achieve high temperatures and prevent element failures. Isolating materials may include alumina, ceramic, or fiberglass.
Thickness	<5 mm	Minimize effect of heater on REESS. Some REESS designs may require a thinner heating element.
Area	As small as possible, but no larger than 20 % of the surface area of the targeted face of the initiation cell	Concentrate heat to the smallest feasible area on the cell surface. Largest cell surface should be used, if possible
Heating rate	15 °C/s	Similar to heating rates observed within thermal runaway conditions. ^a

	Maximum temperature	100 °C larger than the chosen setpoint temperatureHeater shall maintain in at the chosen op temperature and take 	erating e into iations
	Control method	Thermostatic closed loop Avoids undesirable test results, such as heating element burnout, elevate heating element temperative cell sidewall rupt due to high element temperature. ^c	ture,
	^a Ideally the h heater.	ating rate is measured directly by a thermocouple on the chos	en
		ure may need adjustment for other chemistries and potentially oid cell sidewall ruptures.	y other
	currents (thick	oltage power source for the heating element will require high er wires), while a higher voltage source will require more resi al and higher levels of user safety while implementing the te	stant
3.	Test p	ocedure for vehicle level test	
	-	neral conditions in Annex 9K, paragraph 3. shall be satisf hod is implemented at the vehicle level.	ied when
	(a)	Instrument the REESS as outlined above and con cooling/communication and high voltage lines and reinstal nto vehicle.	
	(b)	Connect to CAN-bus or other vehicle monitoring system that about battery management system.	to collect
	(c)	nstall video camera inside vehicle cabin to recor dashboard/information screen) and audio (warnings) from luring test if applicable.	
	(d)	Perform multi-gas measurement according to "Recorded neasurements" paragraph if applicable.	data and
	(e)	Furn vehicle "on" and set it in the "parked" mode.	
	(f)	Verify there are no warning indications related to RI powertrain failure before proceeding.	EESS or
	(g)	egin recording temperature and battery management syst	em data.
	(h)	Begin sending power to the heating element.	
	(i)	Open relay to heater after:	
		i) a predetermined maximum heating period, or	
		ii) a total energy input to the heater that is > 20 % of i cell energy, or	nitiation
		iii) earlier, based on thermal runaway detection criter initiation cell given in Annex 9K, paragraph 5.	ia in the
	(j)	Discontinue the heating when the thermal runaway of the i cell is confirmed by fulfilment of one of the main criteria i PK, paragraph 5.1.	
4.	(Place	older) Test procedure for REESS or REESS subsystem test	


881 Annex 9K – Appendix 2

882 Thermal runaway initiation method with internal heater

883		This test method is similar with the external heating method except it
884		relies on an internal, localized short circuit inside the cell created by a
885		local heater. The purpose of this test is to create a thermal runaway
886		through the creation of a hole in the separator of the triggered cell. The
887		hole comes from the local melting of the separator induced by the local
888		heater.
889	1.	Trigger method description
890		The heater is a resistor made of a tungsten flat spiral (Figure 3). The coil
891		is wrapped in one layer of separator with similar melting temperature as
892		the cell separator.
893		The important parameters of the resistor heater are:
894		(a) thickness of heating filament: see Figure 1,
895		(b) resistance: $(200 \pm 5) \text{ m}\Omega$,
896		(c) heating power: from 50 watts to 200 watts between 10 s and 120 s
897		to the cell,
898		(d) the entire heating area shall be located on the separator.
899		The resistance, power and duration shall be adjusted according to the
900		electrochemistry and the size of the cell.
901		The energy is only released in the tungsten portion of the device since the
902		external leads do not generate significant heat and, therefore, this
903		additional energy does not influence the outcome of the test.
904	Figure 1	

904 905

Example of an internal heater flat spiral of tungsten

(mm)

906
907
908

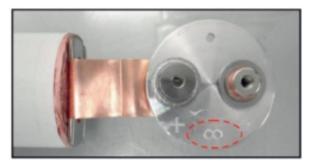
909

910

911

912

913


NOTE: The wire diameter is usually 0.1 mm to 0.3 mm

2. Initiation cell preparation

The heater is inserted in the connected electrode stack or jelly roll before cell sealing with the following steps. These steps are adapted for cylindrical and prismatic cells. A similar internal heater can be used for pouch cells with an adapted sealing principle.

- 9142.1.Step 1: Two holes are drilled into the cover to allow the electrical915feedthrough of the heater from inside the cell to the outside (Figure 4).
- 916 917

918 Figure 2 919 Example of specific holes in cover for heater connection

- Step 2: Unroll the separators and the electrodes to insert the heater. 2.2.
- 2.3. Step 3: Locate the heater on the last wrap of electrode (Figure 4). The heater should be placed between the outermost negative and positive electrodes for the cell, if possible (see Figures 3, 4 and 5). The location should be determined between the manufacturer and Technical Services.

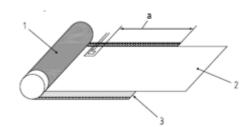
Avoid unrolling a larger part of the jelly roll, since this can lead to damage of the jelly roll. Use an outer stack in case of stacked layers.

928 Figure 3 929

920 921

922

923


924

925

926

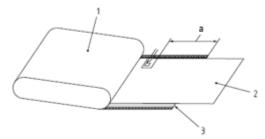
927

Example of heater location inside the cylindrical cell.

930		
931		

932

933


934

935

936 937 938

- 1 positive electrode
- 2 separator
- 3 negative electrode
- 180mm from end of positive electrode and 15mm from end of a negative electrode, tolerance ±5 mm.
- 939 Figure 4 940 Example of heater location inside the prismatic cell.

Key

941	
942	Key
943	1 positive electrode
944	2 separator

- 2 separator
 - 3 negative electrode
 - 180mm from end of positive electrode and 15mm from end of a negative electrode, tolerance ±5 mm.

945

946

949	Figure 5
<i>·</i> · · ·	
950	Example of heater located on the last lap of negative electrode

Figure 6 Example of jelly roll equipped with heater

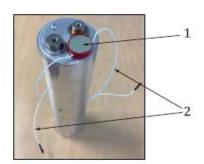
2.4.

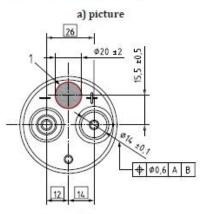
955 956

Step 4: Wind the jelly roll with the heater (see Figure 6).

960Figure 6961Example of jelly roll equipped with heater

9629632.5.964Step 5: Insulate the heater supply wires from the other parts of the cell.
They are directed through the specific holes in the cover (see Figure 7).
Assemble the lithium-ion cell according to standard manufacturing
processes (e.g. electrolyte filling, cover welding).


All wires used in the REESS or REESS subsystem shall be electrically isolated. Furthermore, it should be ensured that no electrolyte or gases can leak out through the space between the wire strand and the wire insulator.


Selection of resin is critical as the strength of seal shall be greater than any installed vent of the cell. Furthermore, it should be ensured that no electrolyte or gases can leak out through the space between the wire strand and the wire insulator.

After cell cover welding, obtain the final sealing of the cell by adding a resin (e.g. epoxy glue). at the interface of the heater supply wires terminals and the cover. Perform the formation of the prepared cell in a designated chamber for that particular purpose. After it is completely dry, carry out a helium test to check the sealing before filling the cell with electrolyte (see Figure 8).

When the helium test is successful, the cell is ready to be filled and formed.

Figure 7 Example of finished cell with heater.

b) illustration

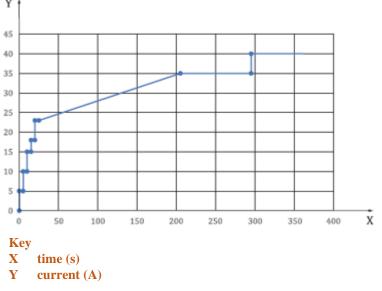
Key

1 resin for sealing of the heater supply

2 supply wires of the heater

986987Figure 8988Example of cell before filling with electrolyte.

3.


Assemble the prepared cell inside the REESS or REESS subsystem according to the standard configuration.

If the modified cell is integrated into a REESS subsystem, without connecting wires (temperature sensor and internal power supply), some module modification may be necessary. Create a hole with sufficient diameter on the REESS or REESS subsystem case for all wires, thermocouple, voltage sensor, and so on. Fill in the hole of an initiation module with heat-resistant resin to prevent the inflow of oxygen or flame to escape from the hole during the test.

983 984

985

999 1000	Con supp	nect the heater terminals by a dedicated connection box to the power oly.
1001 1002 1003 1004	ther subs	assemble and seal the Tested-Device. Connect all wires of the heater, mocouples and voltage sensors to the outside of the REESS or REESS system though a hole in the REESS casing and seal the holes with heat- stant resin.
1005 1006		a vehicle level test, mount the REESS on the vehicle, according to ufacturer's specifications.
1007	4. Inte	rnal heater test procedure
1008	The	test procedure consists of the following steps:
1009	(a)	checking and connecting the heater;
1010	(b)	checking heater resistance;
1011 1012	(c)	applying the heater current profile specified in Table 1 and Figure 9 until thermal runaway;
1013 1014 1015	(d)	discontinue the heating sequence when thermal runaway when the thermal runaway of the initiation cell is confirmed by fulfilment of one of the main criteria in paragraph 6.3.5.1
1016 1017	(e)	continue the measurements until the cell temperature decreases to 60 $^\circ\mathrm{C}.$
1018 1019 1020	Figure 9 Current profile fo Y	r heater

Table 1Current profile for heater

Time (s)	<i>Current (A)</i>
0	0
0	5
5	5
5	10
10	10
10	15
15	15
15	18
20	18
20	23
25	23
205	35
295	35
295	40
360	40

1031 Annex 9K – Appendix 3

1032 Thermal runaway initiation method with nail penetration trigger

1033

1034 (Placeholder)

1035