Results of Thermal Propagation Tests of HEV Batteries

12-14 March , 2024

3rd meeting of SIG on Thermal Propagation

JAPAN AUTOMOBILE STANDARDS INTERNATIONALIZATION CENTER

Introduction

Battery systems for HEVs differ from those for BEVs in their required characteristics: theoretically, they have a lower risk of undergoing thermal runaway and Thermal propagation due to their smaller cell and pack capacities and lower SOC for normal use.

Japan conducted thermal propagation tests of battery systems for HEVs using the external heating method, which is defined as "main method" in SIG on TP, and studied whether the Thermal propagation test discussed in the SIG (UNR100) should be required for battery systems for HEVs.

Test Conditions

On January 25 and 26, 2024, the Japan Automobile Research Institute (JARI) conducted Thermal propagation tests using two types of battery systems for HEVs that fall in the HEV range as explained by OICA at the Stockholm meeting.

Battery pack A for HEVs

✓ At the specified additional energy rate (20%), the triggered cell did not start thermal runaway.

- \checkmark The thermal runaway of the triggered cell was confirmed at an additional energy rate of 67%.
- ✓ The thermal runaway of the triggered cell did not provoke thermal propagation to adjacent cells.

Battery pack B for HEVs

- \checkmark The thermal runaway of the triggered cell was confirmed at an additional energy rate of 13%.
- ✓ The thermal runaway of the triggered cell did not provoke thermal propagation to adjacent cells.

MD: Module

	Battery pack A 1.1kWh*	Battery pack B 1.5kWh*	Reference ISO
Pack configuration	2MD, 36 cells/MD (Pack: 72s)	4MD, 20 cells/MD (Pack: 80s)	
Test SOC (%)	SOC around 80%*	SOC around 80%*	
Thermal runaway of the triggered cell	Occurred	Occurred	_
Thermal propagation	Not occurred	Not occurred	_
Additional energy rate (%)	67	13	20% or less
Heater temperature rising speed (ºC/s)	16	17	10 - 25

*Estimated values from publicly available information

Test Results for Battery Pack A for HEVs

Thermal runaway was judged occurred when: dT/dt ≥ 1° C/s continued for 3 seconds and the voltage dropped by 25%

- ✓ Thermal runaway judged occurred about 4 seconds after the pack started generating smoke
- ✓ No thermal runaway observed in adjacent cells. No Thermal propagation confirmed, either

Test Results for Battery Pack B for HEVs

Thermal runaway was judged occurred when: dT/dt ≥ 1° C/s continued for 3 seconds and the voltage dropped by 25%

✓ Thermal runaway judged occurred about 6 seconds after the pack started generating smoke
 ✓ No thermal runaway observed in adjacent cells. No Thermal propagation confirmed, either

Test Conditions

lterne		ISO 6469-1 amd.	UNR100 (draft)
items	i nis test	Conditions	Conditions
Product under test	Two types of HEV battery packs Packs A and B (both rectangular cells)	Rectangular, cylindrical, or pouch	Rectangular, cylindrical, or pouch
Heater material	Aluminum nitride (WALN-1H by Sakaguchi Electric Heaters)	Insulation coated Ni-Cr or other suitable resistance heating materials	Insulation coated Ni-Cr or other suitable resistance heating materials
Thickness (mm)	2.5	<5	<5
Area ratio	Battery pack A: approx. 8% Battery pack B: approx. 9% (Heater: 25 x 25 mm)	As small as possible, not exceeding 20% of the installation surface	As small as possible, not exceeding 20% of the installation surface
Temperature rising speed(°C/s)	\rightarrow	<u>></u> 15	<u>></u> 15
Maximum heater temperature (°C)	550, 500°C	Heater set at >100	Heater set at >100
Heater location	Battery pack A: between cells Battery pack B: between cells and the end plate	Between cells or between adjacent cells and the end plate	
End of test	\rightarrow	In case a thermal runaway occurs, 1 hour after the temperature drops to 60° C; in case no thermal runaway happens, 1 hour after heating ended (over 20% additional energy rate by the heater)	 (i) The initiation is stopped in accordance with the subparagraph (h) above followed by an observation period of [1 hour], or (ii) at least 5 minutes elapse after the activation of the warning indication. If TR has occurred in the initiation cell, but no TP ensued, the observation period of [1 hour] is applied to Tested-Device.]

- No thermal propagation reactions occurred in either of the two HEV battery systems tested in this study, which is consistent with the tendency of the test results reported by OICA at the Stockholm meeting.
- Therefore, in the battery systems for HEVs in the HEV range indicated by OICA, even if thermal runaway occurred in the triggered cell by the external heating method defined as "main method", it is likely that thermal propagation will not occur in adjacent cells.
- Japan expects that further tests conducted on battery systems for HEVs would only show similar results predictable in advance. Considering the burden to be increased on certification bodies, testing organizations, etc. when thermal propagation tests begin, we find it appropriate to maintain the documentation requirements as currently specified in UNR100 for battery systems for HEVs.