

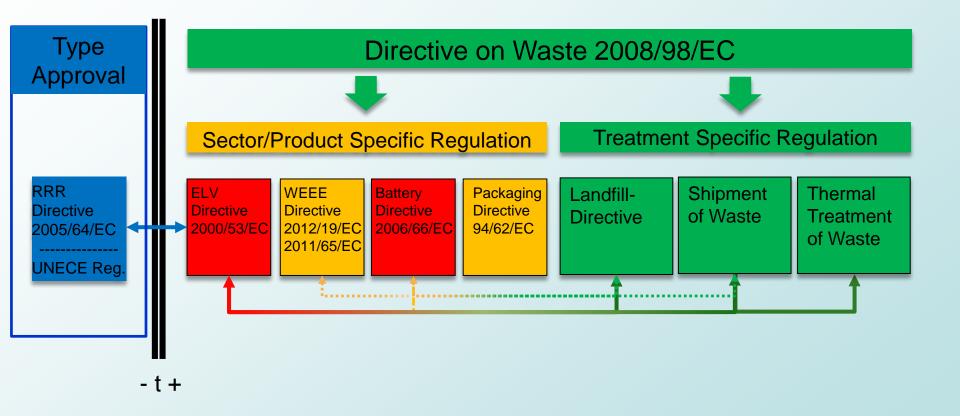
Regulation on Recyclability and Recycling

EVE Meeting Brussels Nov. 28/29, 2014

Klaus Putzhammer Adam Opel AG

RECYCLABILITY

An innovative concept



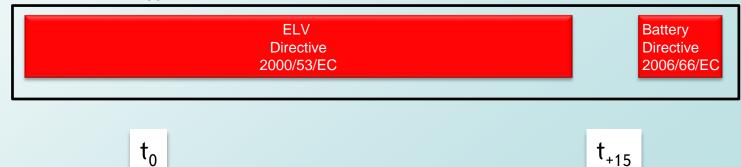
Recyclability in Vehicle Type Approval

- Type Approval Recyclability is dealing with the theoretical reusability, recyclability and recoverability of the <u>WHOLE VEHICLE</u> based on its material composition.
 - Legislation on type approval recyclability is addressing the automobile industry (OEMs and suppliers)
- In Europe, Type Approval Recyclability has been regulated in Directive 2005/64/EC, amended by Dir. 2009/01/EC.
- At WP29 meeting Nov. 2013, a UNECE regulation on recyclability of motor vehicle has been approved ensuring GLOBAL ALIGNMENT.

Recyclability in the context of EU End-of-Life Regulation

Two Aspects of Vehicle Recycling

Type Approval – New Vehicle Types


- End of Life Vehicles
- Recyclability Rate
- o Waste Treatment
- o Theoretical Approach

End of Life Vehicles – Treatment

Waste Treatment of Vehicle fluids & components (incl. Battery)

o Real Life

t_3

Recyclability a Visionary Concept! Why we needed it!

Inauguration of ELV Directive 2000/53/EC required OEMs to achieve RECYCLING QUOTAS:

Year	Reuse & Recycling	Reuse & Recovery
2006 onwards	80%	85%
2015 onward	85%	95%

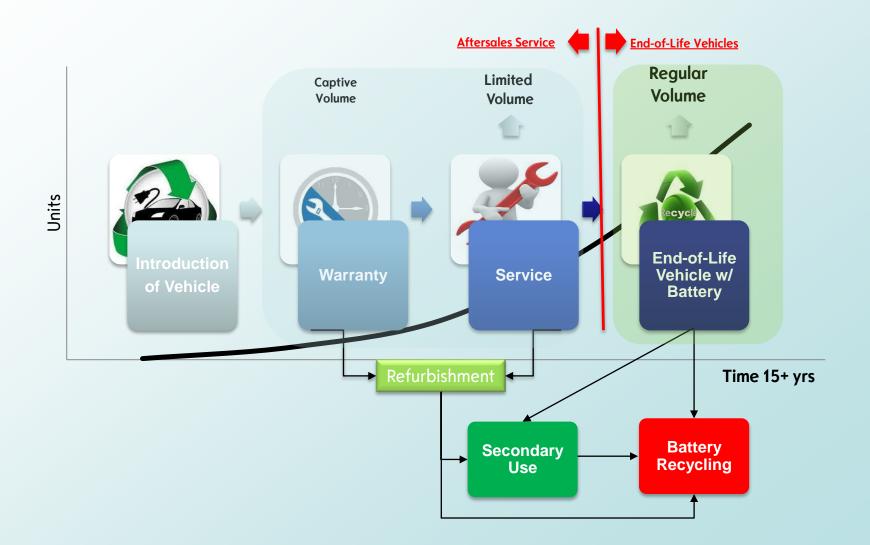
- Recyclability was introduced into regulation as early as 2001 as a bridge instrument to attain recycling performance 14 years later!
- Both RECYCLABILITY and RECYCLING QUOTA are product specific performance measurements!

Battery Directive 2006/66/EC – A Regulatory Summary

Collection	Financing	Information	Performance	Material Ban
 Portable Automotive Industrial 	Producer need to finance any net cost for public information campaigns Producer need to finance any net cost arising for collection, treatment & recycling: • Waste portables • Waste automotive	End-user information on: • Impact on health and environment • Collection schemes • Producer contribution for recycling of batteries • Product labeling (crossed-out wheeled bin, substance symbol (Hg, Cd, Pb))	Collection Target for Portable Batteries • > 25% by 2012 • > 45% by 2016 Recycling Efficiency Requirements: • > 65% Lead acid Batt. • > 75% NiCd • > 50% all other Batt.	 Mercury < 0,0005% Cadmium < 0,002% Exemptions for Button Cells (Hg) Applications (Cd)

Recycling Efficiency is **NO PRODUCT** specific performance criteria! It is a **RECYCLING PROCESS** oriented performance measurement.

Battery Directive has no product specific recycling performance mandate!



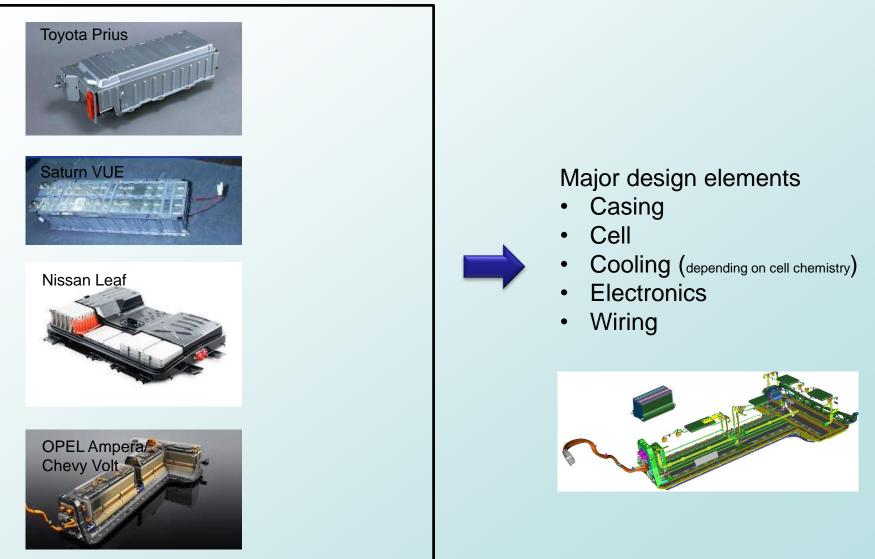
BATTERY RECYCLING

How it is done?

Origin of HV Batteries or Battery Components for Recycling

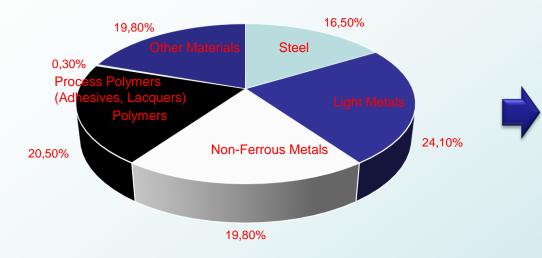
Battery Recycling Volumes

EBRA Recycling Statistics: Comparison 2011-2012 (Tons)				
	2011	2012	Var % 11-12	
Primary ZnC, Alklaine, Zn-Air	25529	26660	4%	
Button cells (all types)	11	101	817%	
NiCd (consumer, sealed)	3488	3264	-6%	
NiCd (industrial)	3116	3367	8%	
Subtotal NiCd	6604	6632	0%	
NiMH (portable/consumer)	581	964	66%	
NiMH (ind., non E-mebility.)	13	73	462%	
NiMH (E-mobility))	9	48	436%	\triangleright
Subtotal NIMH	603	1085	80%	
Li-primary (other than button cells)	90	581	545%	
Li-secondary (portable)	2047	3386	65%	
Li-secondary (ind , non E-mobility)	62	0	-100%	
Li-secondary (E-mobility)	24	127	428%	
Subtotal Li-secondary	2133	3512	65%	
Production / Operation waste	26	21	-21%	
Total recycled:	34996	38591	10%	


NB: EBRA Members only

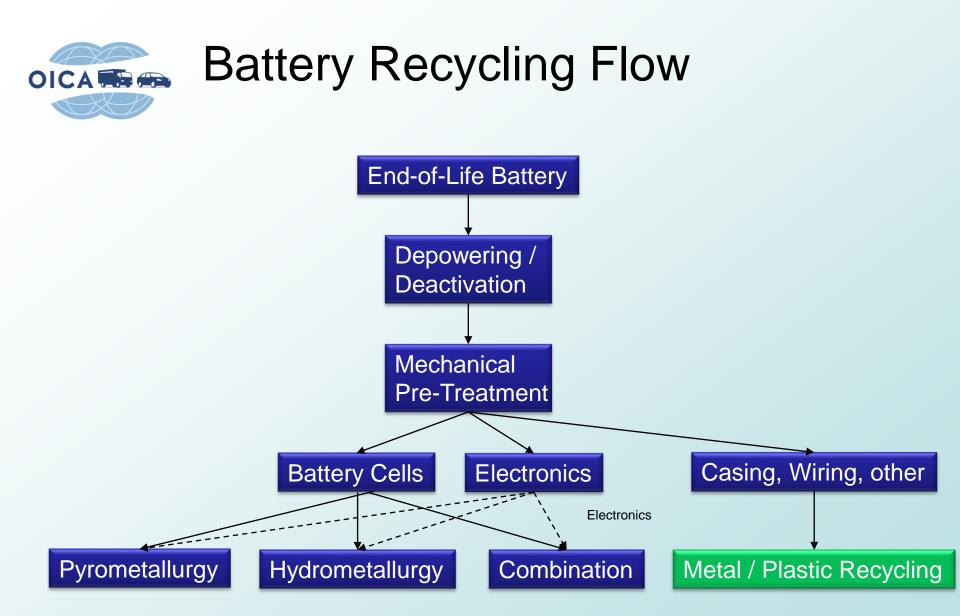
Traction Battery Volume dependent on:

- 1. Vehicle Registrations
- 2. Battery System Durability
- 3. Battery System Reparability
- 4. (Innovative Secondary Use Applications)



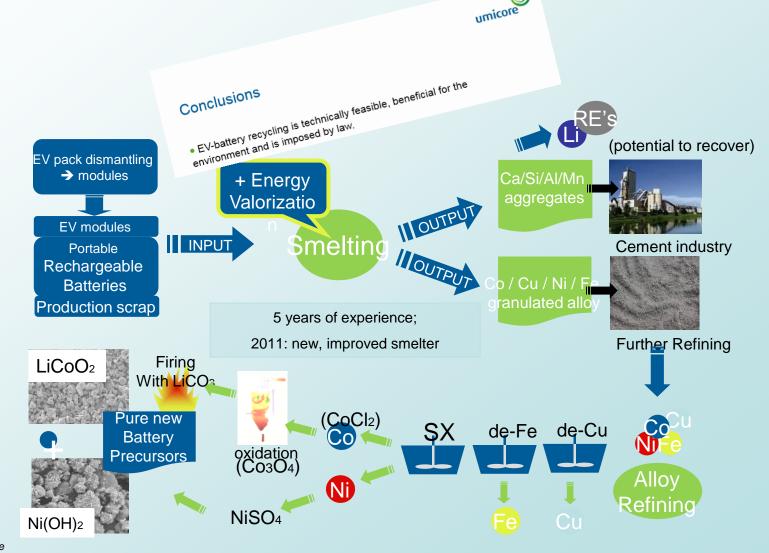
HV Battery System Design

Battery System Materials


Material	Kg / KW	/h
Aluminium	1,50 -	5,00
Copper	1,50 -	4,20
Nickel	0,00 -	1,20
Cobalt	0,20 -	0,30
Lithium	0,07 -	0,01
Steel	1,00 -	2,00
Carbon	1,00 -	1,80
Organic Electrolyte	1,00 -	2,00
Plastic	1,00 -	3,00
Non-Metal Share	41% -	35%

ltem	% of Battery System
Metals	60% - 70%
Cell Weight	~ 60%

Global Landscape of Battery Recycling Facilities


Characteristica of hydro- and pyrometallurgical routes

	Hydrometallurgy	Pyrometallurgy
Advantages	 High selectivity Extraction of ignoble metals is possible Carbon remains as product Low off-gas volumes Small plant size feasible 	 ignoble metals, organics and carbon used for reduction and as energy carrier direct recovery of metals potential for zero-waste process high productivity Low space requirements
Disadvantages	 Using of chemical reagents Water requirement, Waste water treatment Low productivity 	 intensive requirement of energy emission control needed slag – commercial risk large volume of scale

Source: RWTH Aachen

Example: UMICORE Battery Recycling Process

Battery Recycling Conclusions

- Today's recycling processes are capable to recycle all types of batteries
- Battery recycling efficiency determined by process configuration
- Process up-scaling to suit automotive traction battery systems
 - Process innovation to facilitate handling of large scale automotive traction batteries for recycling

Impact Assessment: Recyclability

Influence of battery recyclability requirements on

- Battery regulation
- Vehicle recyclability process
- Innovation to further develop competitive battery systems
- Innovation to industrialize automotive battery pretreatment for recycling
- Implementation of today's best practices likely to inhibit innovation in battery recycling processes / technology
- Increase of battery system complexity
- Incremental environmental benefit

Contact: Klaus Putzhammer, Adam Opel AG 6142 Rüsselsheim, Germany T: +49 6142 777038 / M: +49 160 90770161 E: <u>Klaus.Putzhammer@de.opel.com</u>