Japanese Study for Propagation

JASIC

EVS-gtr IWG #6 in Korea 18th-20th Nov, 2014

Agenda

- 1. Study about propagation
- 2. Report for research about propagation test methods from Japan

Background

■ The research for propagation are now on going in each countries according to the "outline".

<Reference: EVS-04-20e Comparison between Outline (Part B) and OICA GTR Draft(Future plan)>

Japan presented we research and report for propagation in IWG #4@China.

<Reference: EVS-04-22e minutes of Beijing meeting >

Japan present propagation research progress in IWG #6@Korea. This is decided on TF5 discussion.

<Reference: EVS-GTR Progress Report on TF5, send from TF5 leader in Nov. 5th>

Relation between cell hazards and vehicle fire

- Flow from cell hazards to events of cell, battery pack and vehicle are clarified.
- "Propagation" is included in this flow.

*Thermal Runaway

Uncontrolled intensive increase in the temperature of a cell driven by exothermic reactions. (reference: IEC/CD62619)

**Propagation

To propagate thermal runaway from an original cell to surrounding cells.

Relation between phenomenon and EVS-gtr draft

■ Hazards except internal short circuit are reflected in EVS-gtr draft as the requirements of regulation.

	State of vehicle						
Phenomenon of Battery pack	1	2	3	4	EVS-	comment	
	Active driving possible	Recharge, Feeding	Post-crash	Unusual circumstance	gtr draft		
Overcharge	•	•		O (EVSE)	Inc		
Over-discharge				O (EVSE)	Inc		
External heat					1	Over temperature can cover	
Over temperature	•	•			Inc		
Over current charge		•		O (EVSE)	-	Over temperature and overcharge can cover	
Short circuit (external)	•	•	•		Inc		
Dew condensation					-	External short circuit can cover	
Short circuit (internal)	•	•	•		-	Cell internal short circuit is considered as production failure	
Shock	•		•		Inc		
Crush			•		Inc		
Vibration	•				Inc		
Thermal cycle		•			Inc		
Low-pressure					-	Not relevant for vehicle use-cases	

Reviced RESS-1-4 - Consideration for Safety Standard of RESS (RESS) - 1st meeting (Bonn, Germany, 2 November 2010)

Reminder regarding the selection of device under tested

EVS-gtr 4th session Japan presentation

Points to be considered

- In principle, the safety evaluation should be conducted as the vehicle.
- ➤ However, depending on the test procedure, it might be difficult to conduct with the vehicle.
- ➤ In that case, the evaluation of REESS (or its subsystem) will be considered as an alternative/substitute for the evaluation by the vehicle, if the performance of the vehicle can be represented sufficiently.
- The evaluation with smaller level such as module or cell may not adequately represent the performance of the vehicle.
- This is because the representativeness may vary depending on the configuration of the REESS.

Proposal of consideration steps

STEP 1: Consideration of safety target

STEP 2: Consideration of requirement of battery pack

STEP 3: Consideration of test condition

STEP1 Safety target

- Internal short circuit may produce thermal runaway and it is not prevent occurrence by system protection. So, it should be considered as trigger of propagation.
- Battery pack should be designed to achieve "occupant protection (e.g. keeping enough time to evacuate)" in this situation.

STEP2 Battery pack design requirement

- Requirement for battery pack : "not to harm occupants even if a including cell occurs internal short circuit".
- This requirement could be achieved by whole vehicle. So means for achieving (battery pack design) are not limited.

Requirement for Battery pack

Agenda

- 1. Study about propagation
- 2. Report for research about propagation test methods from Japan

Research of battery pack propagation test in Japan

- Making cell internal short circuit forcibly by several methods for three types of battery pack.
- Confirm phenomenon expressed on battery pack.

Example of battery pack propagation test

Nail pick test

Ni tip pointed ceramic nail shallowly inserted into a cell included in battery pack.

Methods of cell internal short circuit in battery pack

- Internal short circuit methods were recommended by each manufacturer.
- There is a representative method of internal short circuit test in IEC62133 and IEC/CD62619(inserting L shape Ni particle). However, it was difficult to conduct the test with all samples.

		Small Size of short circuit area			Large
	Methods of cell internal short circuit tery pack	L shape Ni particle*	Nail pick	Partial heating	Nail penetration
A	PHEV Battery pack (Prismatic cell)		•		
В	EV Battery pack (Prismatic cell)			•	
С	EV Battery pack (Pouch cell)				

Levels of cell internal short circuit

Levels of cell internal short circuit are different by methods.

Results of propagation test

Results of propagation test

B:EV Battery pack (Prismatic cell)

Results of propagation test

C:EV Battery pack (Pouch cell) Voltage **Temperature** Nail pick(→Voltage drop) Voltage Temperature 40 **60** Time [min] **Temperature** Voltage Partial heating →Voltage drop, Smoke, Propagation) 2 0 1 4 5 Time [min]

Summary of our test result

- Methods which can easily cause a cell internal short circuit including in battery pack are different depending on cell type and battery structure.
- Difference of short circuit level (short circuit electrode layers and size) cause difference of battery pack phenomenon in spite of a same battery.

		Nail pick	Partial heating	Nail penetration
A	Voltage drop(V)(1h later)	0.32	No	Max→0
	Cell temperature(°C) (1h later)	44	internal	192
	Phenomenon	Nothing	short	Smoke
В	Voltage drop(V)(1h later)	0.12	No	0.41
	Cell temperature(°C) (1h later)	30	internal	119
	Phenomenon	Nothing	short	Smoke
С	Voltage drop(V)(1h later)	0.04	Max→0	
	Cell temperature(°C) (1h later)	45	634	
	Phenomenon	Nothing	Smoke Propagation	

Thank you for your attention