

#### Usability of ATDs in Extended Use Positions

Dr. Hanna Paul, Noah Kocher 25.04.2024



### Milestones of ATD Technology



Paul H., Peschel I., Hohage B.: Gender discussion in vehicle safety - An overview of the consideration of subparts of the population in vehicle safety based on accident data analysis and current ATD development, VDI Conference Vehicle Safety, Berlin, 11/2023

#### Mercedes-Benz

### ATD Development



#### ATD

mechanical design, sensor systems, testing (e.g. R&R), injury assessment

#### **Biomechanics**

human & field measurement data, anthropometry & biofidelity ATD, injury mechanisms

#### Use case

field events, accident data, legislation, consumer protection

frontal impact, side impact, rear impact, in-position/out-of-position, upright or relaxed

Paul H., Peschel I., Hohage B.: Gender discussion in vehicle safety - An overview of the consideration of subparts of the population in vehicle safety based on accident data analysis and current ATD development, VDI Conference Vehicle Safety, Berlin, 11/2023

Mercedes-Benz

lıme

Usability of ATDs in Extended Use Positions | Paul, Kocher | 25.04.2024

### **ATD Development - Biomechanics**





Anthropometry

Objective: Mapping of a specific group by body measurements and weight Biofidelity

(internal & external)

Objective: Humanlike behavior (forces, moments, stiffness, damping)

Injury prediction



Objective: Link between measured loads to human injuries

4

Paul H., Peschel I., Hohage B.: Gender discussion in vehicle safety - An overview of the consideration of subparts of the population in vehicle safety based on accident data analysis and current ATD development, VDI Conference Vehicle Safety, Berlin, 11/2023

#### Mercedes-Benz

ATDs:

Background of

# Biomechanics - Anthropometry $\rightarrow$

What are the weight and size of the current ATDs based on?

- HIII 50%: Development in the 1970s. Geometry probably based on SAE J963 (invalid since 1979)
- HIII 5% and 95%: Development in the mid/late 1980s based on the UMTRI AMVO study
- THOR 5% & 50%: Development from mid-1990s based on the UMTRI AMVO study
- WorldSID5% & 50%: Development in the mid-2000s based on UMTRI AMVO study
- → UMTRI AMVO study is the gold standard for geometries and masses of the current ATDs







Geometry of all ATDs is based on upright seated anthropometry evaluation !

5

Schneider et al. Development of anthropometrically based design specification for an advanced adult anthropomorphic dummy family, 1983

## 



| Body Region        | Test                                 | Impact<br>Velocity        | Impactor<br>Mass | Impactor<br>Face                 |
|--------------------|--------------------------------------|---------------------------|------------------|----------------------------------|
|                    | Head Impact                          | 2.0 m/s                   | 19.2 kg          | 152.4 mm disk                    |
| Head               | Rigid Bar Face Impact                | $3.6 \pm 0.1 \text{ m/s}$ | 26.2 kg          | Rigid Bar, Diameter 25 mm        |
|                    | Rigid Disk Face Impact               | $6.7 \pm 0.1 \text{ m/s}$ | 10.7 kg          | 152.4 mm disk                    |
| Neck               | Neck Frontal Flexion Response        | 15G Sled Accelerati       | on               |                                  |
|                    | Neck Lateral Flexion Response        | 7G Sled Acceleration      | n                |                                  |
|                    | Torsion                              | 500°/sec                  |                  |                                  |
| Thorax             | Upper Ribcage Central Impact         | $4.3 \pm 0.1$ m/s         | 14.0 kg          | 152.4 mm disk                    |
|                    | Lower Ribcage Oblique Impact (L & R) | $4.3 \pm 0.1 \text{ m/s}$ | 14.0 kg          | 152.4 mm disk w/pad              |
| Shoulder           | Range of Motion/Stiffness Test       | -                         | -                | -                                |
| Abdomen            | Upper Abdomen Dynamic Impact         | $6.7 \pm 0.1 \text{ m/s}$ | 9.0 kg           | Steering Wheel, Diameter 26.7 mm |
|                    | Lower Abdomen Dynamic Impact         | $6.1 \pm 0.1 \text{ m/s}$ | 16.0 kg          | Rigid Bar, Diameter 25 mm        |
|                    | Belt Loading                         | 4 m/s                     | - `              | -                                |
| Lumbar<br>Spine    | Flexion Pendulum Test                | 2.0 m/s                   | -                | -                                |
| Knee-Thigh-<br>Hip | Knee-Thigh-Hip Impact (L & R)        | 1.2 m/s                   | 250 kg ram       | Molded knee interface w/pad      |
|                    | Whole Body KTH Impact                | 3.5 m/s                   | 255 kg ram       | Padded knee interface            |
|                    | Knee Slider Impact (L & R)           | 2.15 m/s                  | 7.26 kg          | 76.2 mm disk                     |
| Leg-Foot-<br>Ankle | Axial Heel Impact (L & R)            | 3.1 m/s                   | 28.4 kg          | Padded Footplate                 |
|                    | Dynamic Dorsiflexion                 | 5.0 m/s                   | 3.0 kg           | NHTSA Impactor                   |
|                    | Inversion/Eversion (L & R)           | 1000°/sec                 | -                | -                                |
| Full Body Sled     |                                      | 30 km/h with 2 kN         |                  |                                  |

Table 2.1. Biofidelity test matrix with test conditions appropriate for the THOR-05F

Objective: Humanlike behavior (forces, moments, stiffness, damping)

Lee et al. *Biomechanical Response Manual: THOR 5<sup>th</sup> Percentile Female NHTSA Advanced Frontal Dummy, Revision 2*, 2018

- Development of ATD specific specifications for biofidelity assessment
- Biofidelity corridors for all relevant body regions (head, neck, thorax, lower extremities,..)
- Body region specific scaling of available data for all ATDs needed
- New in THOR Family Validation via gold standard sled test in specific sex, size and weight

### **Biomechanics - Injury prediction**



- The ATD does NOT suffer or measure injuries; but physical loads (displacement, force, moment, acceleration).
- From the measured values, ATD specific injury criteria are determined, which are used to predict a possible risk of injury.
- There are different criteria for the different body regions.

### **Biomechanics - Injury prediction**



The **Injury Risk Curve** describes the relationship between mechanical loads and risk of injury.

What is the risk of suffering a particular injury under a given load?

Use of risk curve to identify threshold for injury prediction.

#### **Injury Risk Curve**





### Biomechanics – Injury Risk Curve



Example: Thorax Injury Assessment H3

• 185 data sets (67 female & 115 male PMHS, 17-86 years, average 64)

→ Human data, not male or female

- First, development of a risk curve for the H3 50
- Scaling the H3 5 curve from the H3 50

Sources:

*Laituri et al. 2005: Derivation and Evaluation of a Provisional, Age Dependent AIS 3+ Thoracic Risk Curve for Belted Adults in Frontal Impacts, SAE World Congress.* 

*Mertz et al. 1989: Size, weight, and biomechanical impact response requirements for adult size small female and large male dummies; SAE International Congress and Exposition.* 





Biofidelity

(internal & external)



Injury prediction

Background of ATDs:

Anthropometry

Objective: Mapping of a specific group by body measurements and weight



Objective: Humanlike behavior (forces, moments, stiffness, damping)



Objective: Link between measured loads to human injuries

Check positionability

Check usability regarding the biofidelity Check and develop injury prediction

10

Positionability

Literature research

Investigations on Generic Seat up to torso angle 65° cushion angle 35° opening angle 120°

#### Investigations on Driver Seat up to torso angle 60° cushion angle 30°

opening angle 120°











NHTSA: ATD in Highly Reclined Seats, in SAE Government Industry Meeting, 2019

Forman, J, et al.: THOR-50M Modification for Reclined Seating – Initial Assessment, UVA, 2020

Reed, M et al.: Effects of Recline on Passenger Posture and Belt Fit, UMTRI, 2018



- ? geometrical boundaries of the dummies
- ? optical anomalies
- ? preloads
- ? compliance with the target-H-point by HPM I

11

? interaction with the seat (e.g. headrest)

### ATDs in Extended Use Positions - Positionability

#### Hybrid III 50%

OA 110 ok



#### OA 120 not ok





Hybrid III 5%

OA 110 ok



DA 120 not o



Limitation: stiff spine (only lumbar spine as a "joint") prevents further opening, torso or back of knee lose contact with the seat THOR-50M (slouched) OA 110 ok



OA 120 ok



Limitation: increasing hollow back formation, which is considered to be unbiofidelic above  $120^{\circ}$  OA

### ATDs in Extended Use Positions - Positionability

Maximum possible opening angle of ATD needs to be considered.



3 Stages

| Stage 1                   | Stage 2                   | Stage 3               |
|---------------------------|---------------------------|-----------------------|
| Opening angle up to ~110° | Opening angle up to ~120° | Bigger opening angles |



Alternative ATDs

THOR-50M

#### THOR-RS-50M

Concept → not change upright behaviour, just adapt for reclined usage

Standard THOR

Forman et al., Update on Refinements to THOR, 2023 RCCADS

#### THOR-AV-50M

Big changes in upright behaviour (neck, abdomen, pelvis)

Kinsky et al., ATD Development – Status THOR-AV, 2021 RCCADS

### ATDs in Extended Use Positions – Alternative ATDs Positionability

THOR-50M (slouched) OA 110 ok



OA 120 ok



Limitation: increasing hollow back formation, which is considered to be unbiofidelic above  $$120^\circ$\,OA$$ 

THOR-RS-50M

OA 105 ok



OA 120 ok



THOR-RS-50M

Upright ok OA 100



Limitation: Head more forward than THOR 50M

Alternative ATDs - Biofidelity and Injury Prediction

|                          |          | THOR-50M                                                                                    | THOR-RS                                                                                                                                                                    | THOR-AV-50M                                                                                                                                                                         |
|--------------------------|----------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anthropometry<br>↑↑↑↑↑ ↑ | Reclined | Limited to 120° opening angle                                                               | wide opening angle possible<br>(limits unkown)                                                                                                                             | wide opening angle possible<br>(limits unkown)                                                                                                                                      |
| Biofidelity              | Upright  | Comprehensive assessment                                                                    | No change - development goal!                                                                                                                                              | Significant changes                                                                                                                                                                 |
|                          | Reclined | Observed issues in pelvis<br>kinematics (submarining)<br>Evaluation of new injury patterns? | Biofidelity (Kinematics only) is<br>checked currently<br>Evaluation of changed load paths in<br>components?<br>R&R needs to be checked<br>Qualification stays the same<br> | Biofidelity (Kinematics only) shown<br>by Humanetics<br>Evaluation of changed load paths in<br>components?<br>No R&R investigations!<br>New qualification procedures<br>needed!<br> |
| Injury Prediction        | Upright  | Initial Injury risk curves available                                                        | No change - development goal!                                                                                                                                              | Big changes in the dummy (neck,<br>abdomen, pelvis, )<br>New injury criteria for neck and<br>abdomen needed                                                                         |
| +                        | Reclined | Investigations on validity of injury prediction necessary (e.g. chest)                      | Limited modifications<br>validity of others needs to be<br>checked (chest)                                                                                                 | Validity of new and remaining criteria in reclined need to be checked (chest)                                                                                                       |

Mercedes-Benz

Usability of ATDs in Extended Use Positions | Paul, Kocher | 25.04.2024

Alternative ATDs - Biofidelity and Injury Prediction

|                    |          | THOR-50M                                                                                    | THOR-RS                                                                                                                                             | THOR-AV-50M                                                                                                                                                                         |
|--------------------|----------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anthropometry<br>→ | Reclined | Limited to 120° opening angle                                                               | wide opening angle possible<br>(limits unkown)                                                                                                      | wide opening angle possible<br>(limits unkown)                                                                                                                                      |
| Biofidelity        | Upright  | Comprehensive assessment                                                                    | change - o pment goal!                                                                                                                              | Significant changes                                                                                                                                                                 |
|                    | Reclined | Observed issues in pelvis<br>kinematics (submarining)<br>Evaluation of new injury patterns? | Biofidelity atics only) is<br>chean of the<br>Evaluation of changed load paths in<br>comments?<br>R&R needs to be checked<br>ication stays the same | Biofidelity (Kinematics only) shown<br>by Humanetics<br>Evaluation of changed load paths in<br>components?<br>No R&R investigations!<br>New qualification procedures<br>needed!<br> |
| Injury Prediction  | Upright  | Initial Injury risk curves available                                                        | No change - development goal!                                                                                                                       | Big changes in the dummy (neck,<br>abdomen, pelvis, )<br>New injury criteria for neck and<br>abdomen needed                                                                         |
| +                  | Reclined | Investigations on validity of injury prediction necessary (e.g. chest)                      | Limited modifications<br>validity of others needs to be<br>checked (chest)                                                                          | Validity of new and remaining<br>criteria in reclined need to be<br>checked (chest)                                                                                                 |

Mercedes-Benz

Usability of ATDs in Extended Use Positions | Paul, Kocher | 25.04.2024

### Summary

- In discussion different stages of opening angle need to be taken into account
- Current dummys (e.g. H3 Family) seem to be usable up to a certain opening angle
- Alternative ATDs like THOR 50M and prototypes for reclined are available

→ more investigation on biofidelity on component level and injury prediction is needed for high opening angles

• Experience should be gathered with moderate opening and recline angles

Copyright 05/2024 Mercedes-Benz, all rights reserved. For reproduction permission and all other issues, please contact hanna.paul@mercedes-benz.com."