UTAC'

ACEA study on ASEP 27.05.2024 – WP1

Study on ASEP – Work Package 1 - Results

ACEA initiated a study on ASEP, which was later joined by several Contracting Parties (France, Germany, Japan, The Netherlands)

WP.1: Achievements by ASEP (as in force today)

The study consists of two work packages

This presentation presents the results of WP.1, started from the following questions:

- Did ASEP affect product designs?
- Did ASEP lead to a remarkable release of single vehicle annoyance in real traffic?
- How is ASEP handled during type approval?

The following work packages were carried out

- Literature review, on the development of ASEP and its impact on the product design.
- **Questionnaire survey,** towards manufacturers and contracting parties
- Test campaign on vehicles, 8 vehicles (4 twins) tested

Literature review : ASEP during development (2005-2009)

UTAC

OICA proposal

- Detecting **non-linearities**, cyclebeating, cheating.
- Engineering method based on a linear regression determined individually per vehicle.
- Engine speed based.

F/D proposal

- Based on linear sound behaviour.
- Establishing **limit curves** based on fixed slopes.

Slope-Assessment

Model-based approach

- Combination of F/D and OICA proposals.
- Critics/limitations:
- The engine speed, as only explicative variable, limits the gear ratios to k ≤ i (for limiting the influence of the rolling noise).
- No Not-to-exceed limit (No worst-case).
- Slope-Assessment could allow noisier vehicles than R51.02.

Netherlands proposal

- Establishing limit curves.
- Method not based on a physical noise model but geometrically built from both the **anchor** point and a **N-T-E** point at the **maximum** engine speed.
- Dealing with the worst-case, but the slope could be artificially flat, especially for vehicles with high rated engine speed.

Ref. Sound Assessment

- Preserving the benefits of R51.02.
- Operating conditions close to 61 km/h and 1.9 m/s².

L_{urban}-Assessment

Not-To-Exceed approach

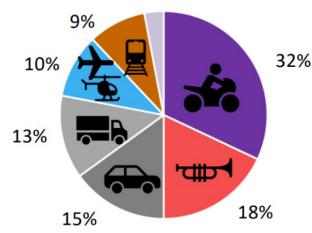
- Defining a vehicle of concern using L_{urban} as metric.
- **Classifying** method **empirically** established from dataset.
- The assumptions make difficult to understand the physical noise behaviour of the vehicles.

Literature review : Vehicle annoyance versus ASEP

Administration's observation: citizens' complaints (from environment groups)

• Sound emitted by M1 cars is perceived as **one source for annoyance**, but less important compared to other sources.

Administration's action: noise abatement for single events noises


- Installation of automated noise camera to monitor sound from passing vehicles
- Such monitoring can be used to gain an overview about nature, number and timing of any kind of noise events (sirens, horns, street sweepers, garbage trucks, modified vehicles, reckless driving, buses, trucks and more).

Manufacturer view: satisfying customers expectation (stipulated by press reports)

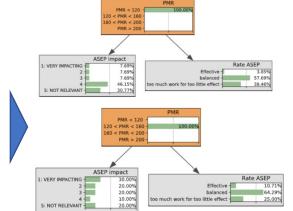
- Many customers request a pleasant sound.
- Compromise is needed to serve customer and comply with regulations (especially ASEP).

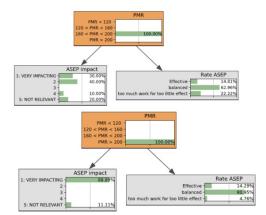
Press' (motor vehicles magazine) observation:

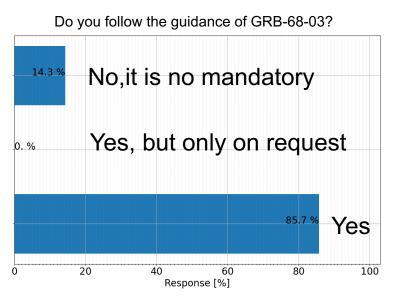
- The sound of newer car models seem to be less emotional.
- Customers report that new cars were "disappointing compared to previous models".

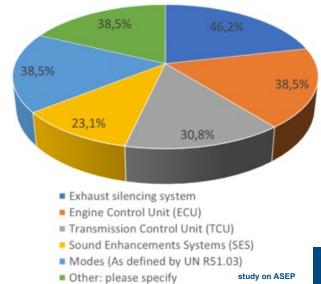
Medusa Noise Monitor

ACEA/UTAC study on ASEP


Major sources for citizen complaints

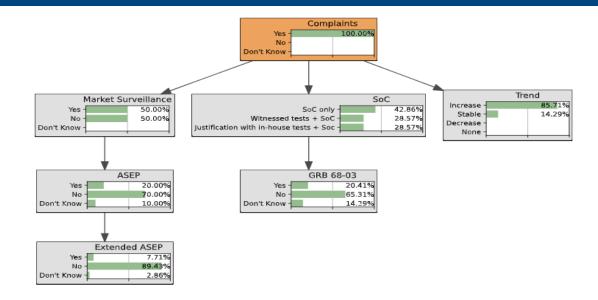

Key findings from OEMs questionnaire

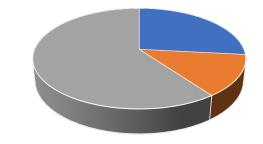

- 1. Most manufacturers apply the guidance of the GRB-68-03 voluntarily.
- 2. Correlation between the PMR and the impact of the ASEP.
- 3. Most manufacturers of vehicles with low PMR are little impacted by ASEP.
- 4. Most manufacturers of low PMR vehicles consider ASEP too time-consuming with minimal impact.
- 5. Most manufacturers of high PMR vehicles rate ASEP as being balanced regarding time consumption versus effort on sound reduction.
- 6. ASEP has an impact, especially on exhaust system, ECU and TCU.



Answers to the questionnaire:

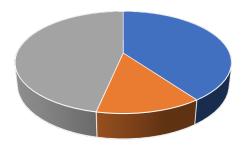
Which components were impacted by ASEP?


Key findings from CPs questionnaire


- 1. The trend of citizens' complaints seem to increase, which could be linked to more awareness of environmental noise issues (after Covid 19, with home office, ...).
- Vehicle sound is not systematically controlled in 2. the frame of Regulation 2018/858 market surveillance (MaS). Only half of CPs answering to the questionnaire apply MaS for vehicle sound.
- ASEP is rarely tested during Market Surveillance 3.
- Low assessment or information regarding the 4. ASEP effectiveness in reducing single vehicle noise.

Conclusions:

- At least, the EU system enables multiple tools to enforcement for noise abatement
- A recommendation is to
 - Systematically use the MaS
 - Enforce in-use controls and strength Periodical Technical Inspection (PTI).



In your opinion, has ASEP contributed to making noisy single vehicles quieter?

YES NO DON'T KNOW

Is ASEP an important tool for single vehicle noise abatement ?

NO = DON'T KNOW YES

WP1 Test program:

- Tests were performed according to UN R51.02, UN R51.03 and ASEP and partly RD-ASEP based on the test program outlined by the IWG RD-ASEP in 2017/2018.
- ^o Eight vehicles (4 twins) are targeted of which 6 tests (3 twins) have been completed.
 - ^o If possible, twin pairs of vehicles shall be tested,
 - one approved under UN R51.02, and
 - the successor model approved under UN R51.03 (preferably stage 2).
 - Vehicles selection is based on press reports, outcome of questionnaires and availability.
- Availability was a challenge as the target vehicles are high powered and not easy to get.
 - Therefore, data were received from
 - An authority research program of 2018-2020
 - From manufacturer type approval tests (which have been witnessed by their technical service)
- Target to complete all tests by end of July 2024

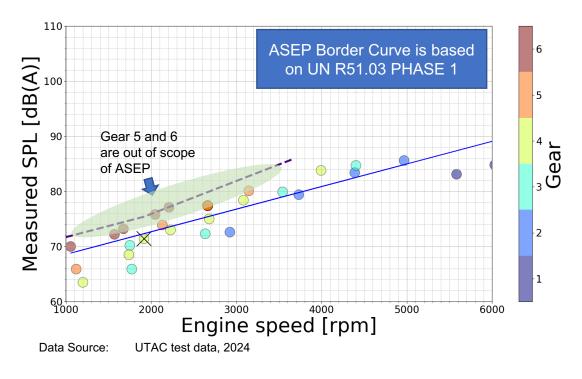
TWIN 1 – Technical Background Information

TWIN 1 – OLD Model

General Approval Information								
Model Year	2015							
Official Approval	UN R51.02	73 dB(A)						
For this study	UN R51.03	71 dB(A)						

Tech. Data		N	/alue		U	nit			
Engine		4 cylinder Petrol				1998 cc			
Net Power P _n			201		kW				
Rated Engine Speed S		ť	5500			1/min			
Curb Mass m _{ro}		1545				kg			
PMR		143				kW/t			
Reference Point		Front							
Tyre Dimension		225/40 ZR18 92W							
Max Vehicle Speed		254				kr	n/h		
	GEAR RATIOS CALCULATED PER RUN								
AVG 9,6	15,7	21,6	29,1	35,0	43,0				

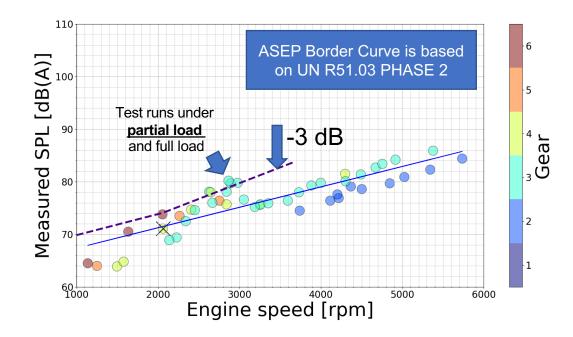
TWIN 1 – NEW Model


G	eneral Approval Informati	on						
Model Year 2022								
For this study	UN R51.02	73 dB(A)						
Official Approval	UN R51.03	70 dB(A)						

Tech. Data	Value	Unit			
Engine	4 cylinder Petrol	1,798 cc			
Net Power P _n	221	kW			
Rated Engine Speed S	8250	1/min			
Curb Mass m _{ro}	1569	kg			
PMR	141	kW/t			
Reference Point	Front				
Tyre Dimension	235/40 ZR18 91Y				
Max Vehicle Speed	255	km/h			

		GI	EAR RATIO	S CALCULA	TED PER RL	JN		
AVG	G 8,7 14,0 20,1 27,5					42,4		
i	1	2	3	4	5	6	7	8

TWIN 1: ASEP **Slope**-Assessment method

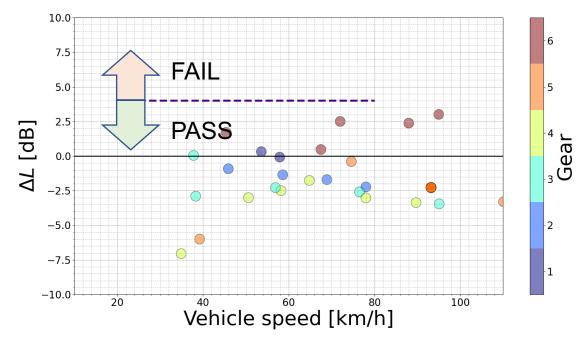

TWIN 1 – OLD Model

FINDINGS:

- Old model is not affected by ASEP
- New model struggles more with the ASEP border curve created by a tailpipe resonance.
- However, especially for high engine revolutions show much lower sound levels compared to the old model.

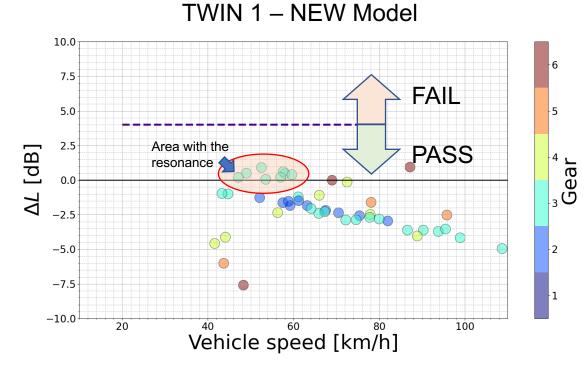
TWIN 1 – NEW Model

Data Source: UTAC test data, 2024


CONCLUSIONS:

- ✤ Overall, the new model is about 3-5 dB quieter than the old model
- Quieter tyres even with bigger size and a quieter powertrain enable the change

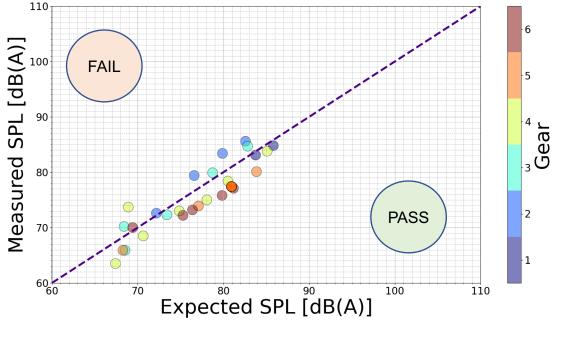
TWIN 1: Lurban-Assessment method


TWIN 1 – OLD Model

Data Source: UTAC test data, 2024

FINDINGS:

- So the Vehicles (old and new) can pass the Lurban-Assessment
- $\label{eq:constraint} \bullet \quad \mbox{The old model is closer to the L_{urban} border.}$
- For the new model, L_{urban}-Assessment indicates the area of sensitivity, but the vehicle can pass the test.
- Partial load run (not shown by this graphs) can be more critical compared to full load.


Data Source: UTAC test data, 2024

CONCLUSIONS:

 L_{urban}-Assessment is more tolerant compared to the Slope-Assessment.

TWIN 1: RD-ASEP comparison measurement / expectation

TWIN 1 – OLD Model

Data Source: UTAC test data, 2024

FINDINGS:

- Both vehicles (old and new) fail RD-ASEP
- The new model could pass RD-ASEP, except of the resonance area.

TWIN 1 – NEW Model

CONCLUSIONS:

- The question can be raised, whether a single resonance shall create a fail of the vehicle in type approval.
- The scope of ASEP should be to identify, if a vehicle is deviating from the type approval manner over a large – driver usable rangefrom the expected sound level.

TWIN 2 – Technical Background Information

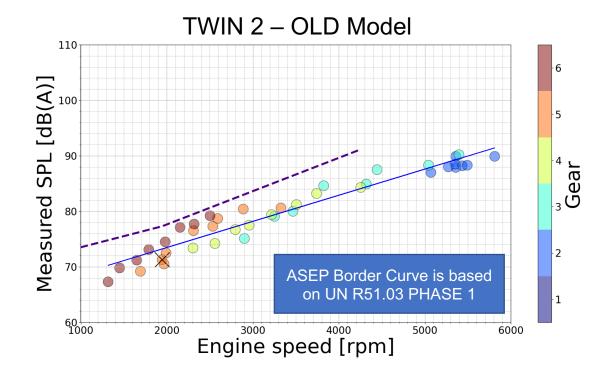
TWIN 2 – OLD Model

G	General Approval Information								
Model Year 2011									
Official Approval	UN R51.02	72.2 dB(A)							
For this study	UN R51.03	73 dB(A)							

Tech. Data	Value	Unit		
Engine	8 cylinder Petrol	4 163 cc		
Net Power P _n	331	kW		
Rated Engine Speed S	8250	1/min		
Curb Mass m _{ro}	1954	kg		
PMR	169	kW/t		
Reference Point	Front			
Tyre Dimension	265/35 R19 98Y			
Max Vehicle Speed	250	km/h		

	GEAR RATIOS CALCULATED PER RUN								
AVG	AVG 12,5 18,7 22,9 30,1 39,2								
i	1	2	3	4	5	6	7	8	

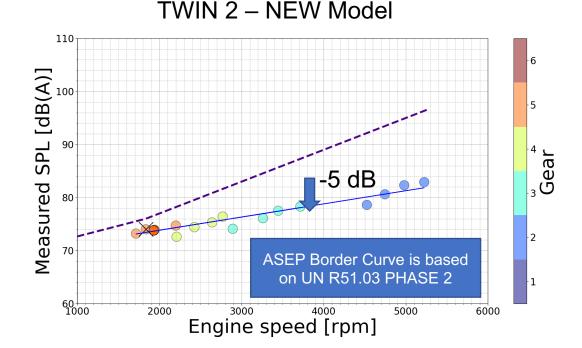
TWIN 2 – NEW Model

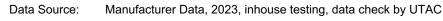

General Approval Information									
Model Year 2017									
For this study	UN R51.02	69 dB(A)							
Official Approval	UN R51.03	71 dB(A)							

Tech. Data	Value	Unit		
Engine	6 cylinder Petrol	2 894 cc		
Net Power P _n	331	kW		
Rated Engine Speed S	6700	1/min		
Curb Mass m _{ro}	1860	kg		
PMR	178	kW/t		
Reference Point	Front			
Tyre Dimension	275/30 R20 97Y			
Max Vehicle Speed	250	km/h		

		GE	AR RATIOS	S CALCULA	TED PER R	UN		
AVG		13,0	18,3	24,2	30,9			
i	1	2	3	4	5	6	7	8

TWIN 2: ASEP **Slope**-Assessment method

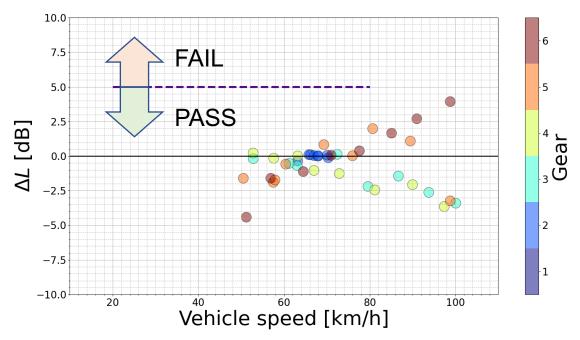




Data Source: Manufacturer Data, 2023, inhouse testing, data check by UTAC

FINDINGS:

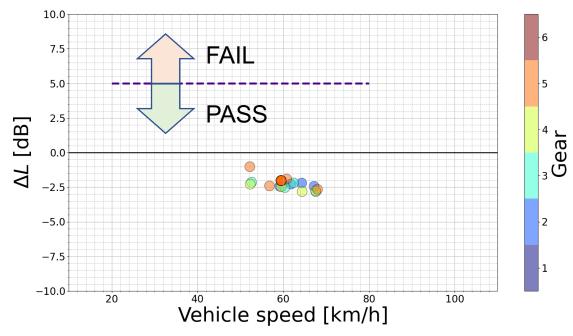
- The old model can pass the ASEP test.
- The orange and brown points are higher gears, which are not in the focus of ASEP today.
- The new model is very different, given by a new engine.
 (V6 instead of V8), despite the wheel are bigger.


CONCLUSIONS:

The new model show is about 5 dB to 8 dB quieter especially towards higher engine speeds.

TWIN 2: Lurban-Assessment method

TWIN 2 – OLD Model

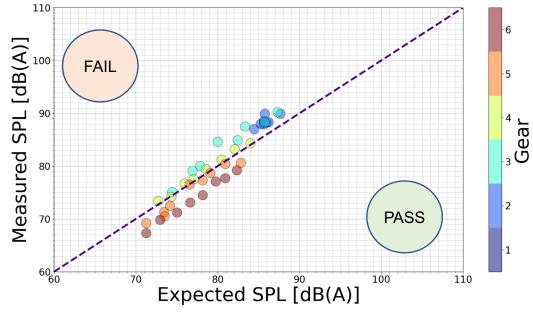


Data Source: Manufacturer Data, 2023, inhouse testing, data check by UTAC

FINDINGS:

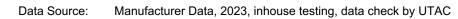
- ✤ Both vehicle comply with L_{urban}-Assessment.
- The new model is much below the ASEP border.

TWIN 2 – NEW Model


Data Source: Manufacturer Data, 2023, inhouse testing, data check by UTAC

CONCLUSIONS:

 Again, the L_{urban} method is less demanding compared to the Slope -Assessment


TWIN 2: **RD-ASEP** comparison Measurement / Expectation

TWIN 2 – OLD Model

Data Source: Manufacturer Data, 2023, inhouse testing, data check by UTAC

TWIN 2 – NEW Model 110 SPL [dB(A)] 100 FAIL - 5 90 Gear Measured 80 PASS -2 70 70 80 100 110 90 Expected SPL [dB(A)]

FINDINGS:

- The old model cannot pass RD-ASEP in low gear over a large range, while the new model could pass RD-ASEP.
- The new model has no difficulties in passing even RD-ASEP.

CONCLUSIONS:

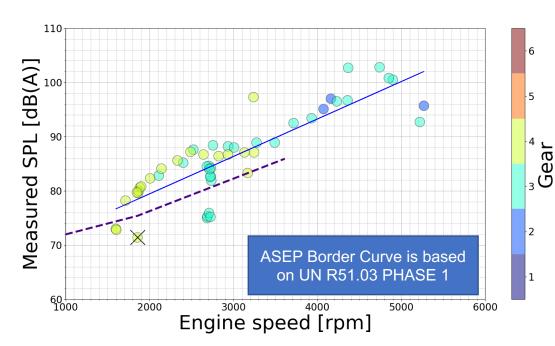
RD-ASEP is more demanding compared to the current ASEP provisions.

TWIN 3 – Technical Background Information

TWIN 3 – OLD Model

			Ge	neral Ap	oprova	l Infori	nati	ion			
Model	Year			2017							
Officia	al App	oroval		UN R51.02			74 dB(A) (Normal) 96 dB(A) (Sport)				
For th	is stud	ly		ι	JN R51	.03			7	1 dB(A)
	Tech.	Data			Value	e				Unit	
Engine	9				R5 Pet	rol			2	2480 cc	
Net Po	ower P	n		294				kW			
Rated	Engin	e Spee	ed S	5850				1/min			
Curb N	/lass n	n _{ro}		1476				kg			
PMR				199,2			kW/t				
Transr	nissior	า			AT			6 Gears			
Refere	ence P	oint			Fron	t					
Tyre D	imens	ion									
Max V	ehicle	Speed		250				km/h			
				GEAR RATIO	S CALCULA	TED PER RU	JN]
Г	AVG i	1	14,6	21,5	29,9 4	5	6	;	7	8	

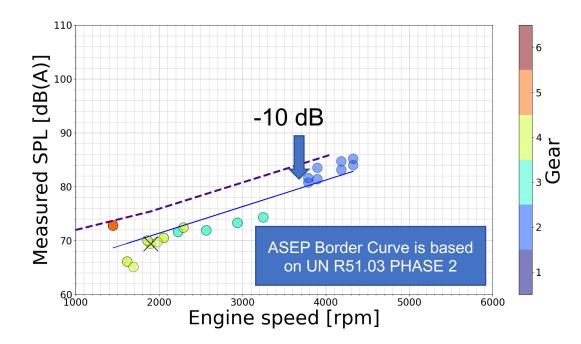
TWIN 3 – NEW Model

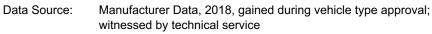

General Approval Information										
Model Year	2018	Facelift of OLD Model								
For this study	UN R51.02	72 dB(A)								
Official Approval	UN R51.03	70 dB(A)								
Tech. Data	Value	Unit								
Engine	R5 Petrol	2480 cc								
Net Power P _n	294	kW								
Rated Engine Speed S	7000	1/min								
Curb Mass m _{ro}	1548	kg								
PMR	189,9	kW/t								
Transmission	AT	7 Gears								
Reference Point	Front									
Tyre Dimension	245/35 R 19 (Front)	255/30 R20 (Rear)								
Max Vehicle Speed	250	km/h								

GEAR RATIOS CALCULATED PER RUN									
AVG		14,2	21,3	29,3	37,5				
i	1	2	3	4	5	6	7	8	study on ASEP

16

TWIN 3: ASEP : Slope-Assessment method


TWIN 3 – OLD Model

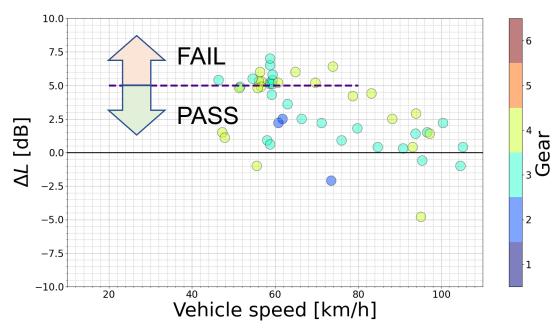


Data Source: German UBA, 2020; Forschungskennzahl 3717 54 103 0 FB000238 Überprüfung der Geräuschemissionen von Motorrädern im realen Verkehr Abschlussbericht

FINDINGS:

- The old model does not comply with the ASEP Slope-Assessment (and was not forced to comply with it)
- The new model was approved under UN R51.03 phase 2 perspective and consequently complies with ASEP.
- The new model is 10 dB quieter than the old model.

CONCLUSIONS:

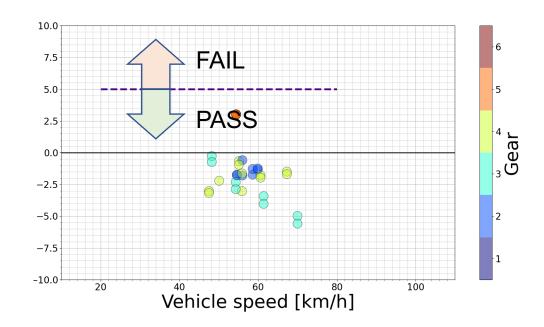

- Both models comply with the UN R51.03 phase 3 limit of 71 dB
- Only Annex 3 Provisions would not have forced any redesign.
- The re-design of the vehicle was stipulated by the ASEP provisions of UN R51.03.

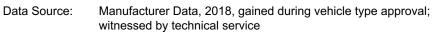
TWIN 3 – NEW Model

TWIN 3: Lurban-Assessment method

UTAC

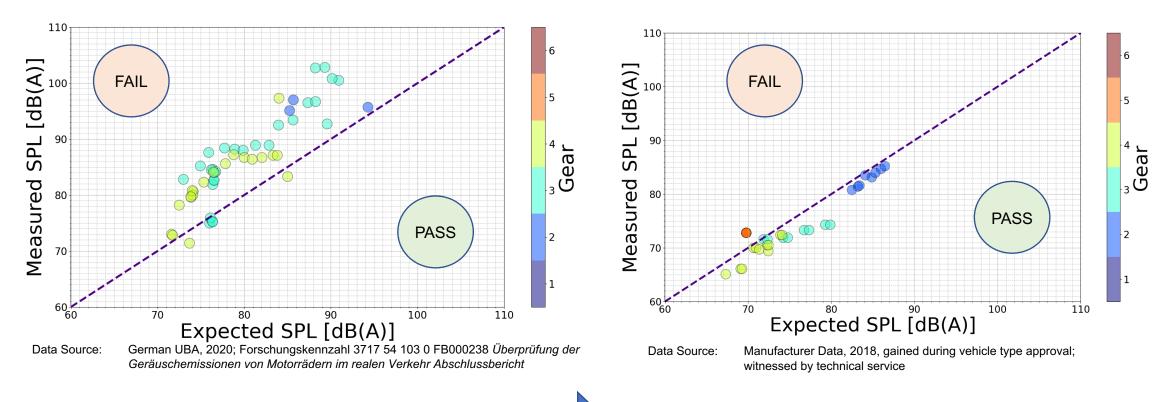
TWIN 3 – OLD Model




Data Source: German UBA, 2020; Forschungskennzahl 3717 54 103 0 FB000238 Überprüfung der Geräuschemissionen von Motorrädern im realen Verkehr Abschlussbericht

FINDINGS:

- Same finding, the old model does not pass the Lurban-Assessment.
- But, more "pass-points" compared to the Slope-Assessment


CONCLUSIONS:

- Same conclusions as for the Slope-Assessment from the previous slide.
- Lurban is less stringent compared to the Slope-Assessment

TWIN 3: RD-ASEP comparison Measurement / Expectation

TWIN 3 – NEW Model

TWIN 3 – OLD Model

FINDINGS:

 Only few tested points of the old model can comply with RD-ASEP (5 points)

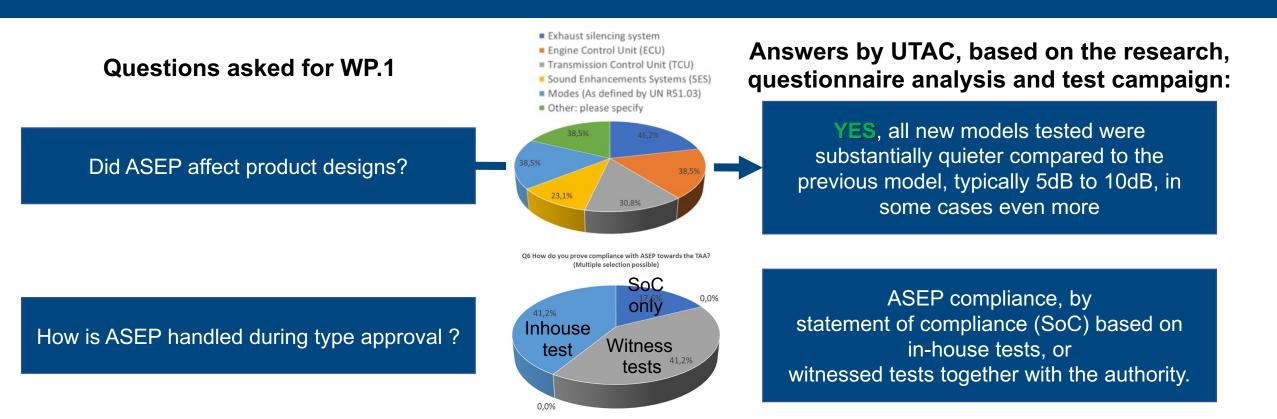
CONCLUSIONS:

 Here again, RD-ASEP is most stringent to the vehicle sound performance, compared to the existing ASEP evaluation methods

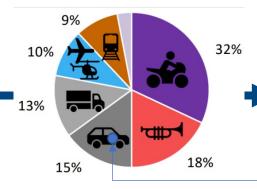
Literature Review:

- Reports on real world single event noises show, that vehicles subject to UN R51.03 ASEP have only a limited share to the overall problem.
- Press releases recognize, that newer model have less "thrilling sound" compared to the previous model.

Questionnaire:


- Manufacturer report, that ASEP impacts especially high performance vehicles, forcing re-design mainly on exhaust system, ECU and TCU.
- ✤ Most manufacturers apply the guidance of the GRB-68-03 voluntarily.
- * Contracting Parties confirm, that noise from single vehicles is a pending concern for citizens.
- However, for Market Surveillance exterior noise of vehicles is not systematically applied. Especially ASEP is rarely checked.

Test Campaign:


- For all investigated TWIN, the newer models were substantially quieter compared to its previous model, even when the older model did already comply with Un R51.03 Annex 3 limits.
- * The progress in sound reduction was stipulated by limits enforcement (phase 1 to phase 3) and ASEP.
- ✤ Slope-Assessment is more stringent compared to L_{urban}-Assessment.
- Upcoming RD-ASEP (status as of monitoring phase 2023/2024) will be more stringent compared to the current ASEP provisions.

CONCLUSIONS

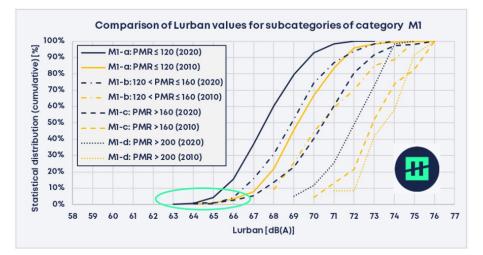
UTAC

Did ASEP lead to a remarkable release of single vehicle annoyance in real traffic?

NO, complains by citizens have not been reduced; other noise sources, or aspects not subject to UN R51 play a role.

driving bahaviour, manipluation, maintenance, ...

Study on ASEP – Final Conclusions




The study has investigated in WP.1 the impact of ASEP on current vehicle technology

Conclusion in one sentence can be expressed as:

UN R51.03 as a package of Annex 3 testing with limits in three phases, plus the specifications on ASEP (paragraph 6.2.3. of the main body plus Annex 7) has delivered significant progress on high performance vehicles.

- Although only a limited number of vehicles were tested, maybe to few for such a general conclusion, but the result is obvious.
- The ATE EL study from 2021 on behalf of ACEA indicated already, that progress in technology for M1 vehicles was biggest for vehicles with high performance vehicles (class M1-c).
- UTAC will continue with testing a 4th TWIN, but we anticipate not significant change on the conclusions.

Main findings for category M1

- Mean values improvements:
- ✓ M1-a: -1.6 dB(A)
 ✓ M1-b: -1.5 dB(A)
 ✓ M1-c: -2.5 dB(A)
 ✓ M1-d: -1.5 dB(A)

www.utac.com

miguel.cruz@utac.com