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Objectives

• Compare Hybrid vs. Non-hybrid emission results
• Compare Chassis to Engine dynamometer testing 
• Contribute to knowledge base for regulatory development
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Heavy-Duty Test Cell #1 Schematic
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The instruments
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The dynamometer

• 500HP DC motor 2200rpm max speed
• Trunnion mounted
• Load cell torque measurement.
• 5000 pulses per revolution rpm measurement
• Regenerative drive
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Testing Parameters
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The setup
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Connection to Dynamometer
• Typical EC Engine testing: Dyno connected to engine, 

controlling engine speed and torque
• Hybrid Power Pack Testing: Dyno connected to 

transmission output
• Testing Engine, Electric motor and Automated Manual 

Transmission configured as a Hybrid Vehicle
• Simulating road speed: differential gear ratio and tire size 

simulated to get correct transmission output speed 
• Given: tire radius, diff gear ratio, vehicle mass and 

A+Bv+Cv² Road Load, cycle as time vs. speed
• Clutch and automated manual transmission allowed to 

operate by Eaton controller
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Change in Dyno Control

• Typical Engine testing Dyno controls torque (or speed), 
engine controls opposite, speed (or torque), cycle is 
speed and torque vs. time

• EPA determined shifting was harsh using this type of 
control due to disconnection of load while transmission 
shifts, so Dyno controller set up similar to EPA system

• Change Engine Dyno Software to behave like a chassis 
dyno and use speed vs. time cycle

• Use throttle to control Hybrid, speed following cycle
• Reacted to changes in torque to determine what dyno 

speed should be
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Dyno Cycle Control Modes

• 4 modes of operation, modeled from EPA’s experience:
-Stopped: zero torque
-Launch: accelerating from a stop; must exceed static RL 
Force before moving, dyno speed set at zero
-Braking: throttle at minimum; brakes not simulated, 
regeneration cannot cause braking too fast, dyno speed 
setpoint is cycle speed, torque cannot build to unrealistic 
levels (modulate braking on/off)
-Accelerating/Cruising: remaining simulation; dyno speed 
set according to measured force and vehicle parameters
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Additional Setup Considerations

• Torque determined from accelerated system inertia and 
measured dyno torque: Tshaft = α Idyno + Tdyno

• Dyno controller provided brake signal to ECM (Engine 
Control Module) input, ECM generated CANBus signal 
for Hybrid Regenerative braking, OK to put into Drive, 
etc.

• Eaton provide firmware change so that “I’m alive”
CANBus signal from ABS module did not need to be 
generated

• Speed sensor installed on input side of transmission for 
dyno controller to monitor and ensure clutch and AC 
motor speed would not exceed max limit
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Speed Set Point Formula

• For Engine Speed Control, the speed set point was 
calculated:
CycleSpeedm/s = fn(time, cycle)
Rpm = 60 x Ratioaxle x CycleSpeedm/s x / (2π x Radiustire) 

• Did not use force control: Fsetpoint = ma + A + Bv + Cv²
• For Dyno Speed Control, measured force determines the 

speed at 100 Hz rate:
Forcesimulated = Torqueshaft * Ratioaxle / Radiustire
Forceacceleration = Forcesimulated – (A + Bv + Cv²)roadload
Accelsetpoint = Forceacceleration / Mass
NewSpeedsetpoint = PreviousSpeedsetpoint + dt * Accelsetpoint
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Target Loading and Cycle Verification

• For cycle verification the measured test speed was 
compared to the cycle target speed

• Test force was compared to calculated cycle target force:
ataget = (vcycle,i - vcycle,i-1) / dt

Ftarget = matarget + A + Bv + Cv², v is the cycle speed
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Dyno System Considerations

• Max Dyno speed limited choice of differential ratios; 
could not simulate lower ratios, so higher engine speeds 
used; use our higher speed dyno in the future

• Assistance from Eaton was invaluable, always willing to 
work through a problem, provided parts and equipment to 
keep the project moving ahead

• Several months of active software changes and trials 
required before able to run tests
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Cycles
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Results
C02 Emissions [ g/mile ]
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Results
Fuel Consumption [L/100km ]
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Results
NOx Emissions [ g/mile ]
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Results
CFR86 TPM Emissions [ mg/mile ]
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Results
Methane [ mg/mile ]
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Results
THC Emissions [ g/mile ]
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Challenges
• Physical & system limitations
• Control system
• Complexity of the system: 

– Wiring
– Additional Sensor (speed)
– J1939 signals
– Hybrid control Module required software update to bypass J1939 ABS 

signals & chassis signal in order to provide regenerative braking
• Simulating chassis testing on an engine dynamometer (simulating 

driver AND vehicle)
• Signal Simulation (parking brake, braking, etc)
• Required involvement of the manufacturer
• Active Regeneration
• Additional software requirements (J1939, Eaton’s Service Ranger)
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Suggestions

• Establishing a standard for active regeneration
• If this testing method is to become standard:

– Manufacturer’s involvement will be required (high voltage, wiring information, 
J1939 signals, etc)

– Due to the increased set-up time, a cost/benefit ratio will have to be evaluated vs 
chassis testing

– Equipment upgrade may be needed due to higher speed testing due to the 
inclusion of the transmission

– The acceptance criteria 2mph/speed regression is challenging to meet
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Summary CO2 Results
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• Added brake force.
– Allows the vehicle model not to have additional states to handle

vehicle braking
– Allows for simulation of foundation brakes

• Putting models into Matlab and Simulink to easily:
– add details to the vehicle model like component inertia and 

efficiency
– add components to simulate vehicle accessories

Improvements to Vehicle Model

  2 i i-1
i,ref meas,i-1 i,ref-1 i,ref-1 brake,i-1 i,ref-1

t tv FR A B v C v F v
M
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Improvements to Driver Model
• Moving to a feed forward driver model that uses vehicle 

parameters to predict required wheel torque to follow 
cycle

• Now includes brake pedal position rather than just on/off
• Cycle speed look ahead
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Conclusion
• CO2 powertrain results for the transient cycles compare 

very well between labs 
• The difference in CO2 emissions for the steady-state 

cycles can be explained by the final drive ratio being 
different between the two labs

• Offset between powertrain and chassis dyno results are 
likely due to the lack of accessory loads, cooling system 
and wheel slip

• Differences in NOx emissions could be due to difference 
in preconditioning and soak time. Since CO2 was the 
main emission of interest, these parameters were not 
closely controlled


