UPDATE TO GTR7 IG ON CERTIFICATION & DRAWINGS

prevented by: Paul Depinet, John Below, John Stephens, Dennis Moeller, John Arthur, Lars Beholz, Gus Serrano, Travis West, Casey Linzmeier, Alexis de Leon, Jason Jordan, Niccole Theisen-Godin 02/05/14
Agenda

• Drawings for UN
• Goal – reminder
• Status of certification test development
• Bumper work update
• Finishing dummies for Injury Criteria Development
 o VRTC dummies
• Test Documentation Discussion
Drawings for UN

• Need to update all drawings to UN standard
• Incorporate comments from GTR7 IG reviewers
• Have samples for discussion
 o Title block ok?
 o BOM and PN handling ok?
 o REV block ok?
 o Weldment handling?
 o Other comments?
Drawings for UN

- Position split bushings at approx. 20-25 degree angle to slot as shown, to prevent cables from riding against split line between bushings.

A. Bond bumpers to structural replacement with bonding adhesive, operating temperature -40°C to +120°C after cleaning with MEK.
B. Glue bumper with rough side down (side with sprues).

Unless otherwise specified:
- All machined surfaces 1.6μ or better.

Draft for Review

E007850 C
ADDED NOTE FOR POSITIONING SPLIT BUSHINGS
11/11/10 3AA

720411 D
RELEASED TO UN
1/29/2014 357

Revision History

<table>
<thead>
<tr>
<th>ECO</th>
<th>REV</th>
<th>DESCRIPTION</th>
<th>DATE</th>
<th>BY</th>
</tr>
</thead>
<tbody>
<tr>
<td>E007850</td>
<td>C</td>
<td>ADDED NOTE FOR POSITIONING SPLIT BUSHINGS</td>
<td>11/11/10</td>
<td>3AA</td>
</tr>
<tr>
<td>720411</td>
<td>D</td>
<td>RELEASED TO UN</td>
<td>1/29/2014</td>
<td>357</td>
</tr>
</tbody>
</table>

All dimensions ±0.5 unless otherwise specified.

Note: All part numbers begin with ECE/TRANS/WP.25/1101/Add.1.
Drawings for UN - Weldment
Goal - reminder

• Develop certification tests which can control dummy reproducibility
 o Must control setup of neck muscle substitutes and damper
 o Must detect critical differences between dummies found in vehicle seat R&R work
 ▶ Spine bumper stiffness
 ▶ Jacket stiffness
 ▶ Pelvis stiffness
Test to Finalize Documentation

• Spine quasi-static setup *(In Mutual Resolution draft)*
 • Set springs and thorax/lumbar shape adjustment

• Jacket only impact *(in 1/27/14 draft)*
 o Control jacket stiffness

• Pelvis only impact, bottom *(in 1/27/14 draft)*
 o Control pelvis stiffness

• Dummy without head restraint *(in 1/27/14 draft)*
 o Set damper, verify correct spring & shape adjustments
 o Need to discuss and finalize corridors
Test Documentation

• Generic procedure for UN MR
 o Draft 1/27/14 provided for review
 ‣ Tried to make generic for regulation
 ‣ Only necessary information
 ‣ Not limit future improvements
 o Need review and comment on what should be in doc
 ‣ Procedures themselves
 ‣ Appropriate level of information

• We will do update with comments to provide for inclusion into MR
 o Will leave thorough formatting for after put into MR
Tests Under Development

• Dummy with head rest (*corridors TBD*)
 o Check complete system performance
 o Trying to detect differences in Thorax/lumbar bumpers
 o Test & procedures under development
 o *Need to resolve bumper issues first*

• Pelvis shape verification (*corridors TBD*)
 o Make sure shrinkage is not too large
 o Test & procedures under development

• Bumper compression on spine (*corridors TBD*)
 o Check change in bumper stiffness
 o Test & procedures under development
Tests Under Development

• Steps to complete
 o Resolve bumper control issue
 o Finish testing R&R and VRTC dummies
 o Run testing varying thorax/lumber bumper stiffnesses to confirm we can detect differences
 o Pick headrest test version (with or without back)
 ▶ Make sure can detect large variation in bumpers
 o Establish corridors around R&R and VRTC dummies
 o Finalize test procedure documentation
Bumper Update

• Why are we discussing
 o TRL/BAST R&R work indicated thorax/lumbar bumpers might be source of problem
 o Rebuild 2 PDB dummies which were problem for years made them match in TRL/BAST testing
 o Rebuild 4 dummies for BAST R&R series with new dummies provided acceptable R&R

• What was different?
 o Bumpers manufactured at one point in time!
 ▸ Standard production process but only 1 batch material
 o Indicates inadequate control of bumpers
Bumper Update

• How are bumpers controlled?
 o HIS orders urethane from suppliers based on durometer specifications
 o HIS manufactures bumpers
 o **HIS checks every bumpers to print durometer specifications**
 o Durometer targets have not changed
Bumper Update

• Why use durometer?
 o ASTM, ISO, and other national standards available
 o Gives indication of material stiffness property
 o Common tool with elastomers to talk about material stiffness
 ‣ This is always the first property discussed when picking a material
 o Very simple, inexpensive, and quick test to do
Bumper Update

• Why not use durometer?
 o Surface indentation test
 ‣ Affected by surface skin and tension
 ‣ Testing a cube on sides, top, bottom will typically give different readings
 ‣ Surface preparation changes readings
 o Poor R&R relative to a tight corridor
 ‣ ASTM R&R study: repeatability 1.92, reproducibility 5.72
 ‣ Differences greater than these numbers are assumed to come from different population
 ‣ Durometer is highly equipment and operator dependent
 o Gage calibration can vary up to +/- 2 points
 ‣ We have seen this with 2 identical gages giving consistent differences of about 2 durometer points
Bumper Update

• Why not use durometer?
 o Most bumpers don’t meet ASTM material size requirements
 ‣ Minimum 6 mm thick
 ‣ Readings must be taken at least 12 mm from edge of part
 o Bumpers don’t test same as material poured from same mix with correct size requirements
Bumper Update

• Why look at compression test?
 o More closely indicates material modulus
 o Closer to how bumpers are used in a dummy
 o Test stand is more automated => less operator influence

• Do durometer and compression indicate same answer?
 o They are related
Bumper Update

ARA-521

Avg Force = -175.1 + 17.36 Durometer - Lab

This was supposed to be a 50 shore A material per the manufacture information
Bumper Update

• Compression testing
 o There is correlation, but wide spread in comparison of data (low R^2)

• Status of compression testing
 o Started with R&R dummies
 o Only done on engineering samples
 o Not used at this time for production control
Bumper Update

• Status of compression test usage
 o Set targets based on R&R dummy bumper test data
 o Tried making bumpers to match
 o Ran into material reproducibility issues
 ▶ Still investigating source of this and when it started

• Did R&R dummy bumpers stiffen?
 o Sample of 10 of each bumper part number removed from 2 dummies for retest
Bumper Update – R&R dummy bumper testing

Plot of Avg Force Change
ARA-521
Retest of R&R Bumpers

<table>
<thead>
<tr>
<th>Dummy</th>
<th>SPEC-_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>054</td>
</tr>
<tr>
<td></td>
<td>054</td>
</tr>
<tr>
<td></td>
<td>054</td>
</tr>
<tr>
<td></td>
<td>054</td>
</tr>
<tr>
<td></td>
<td>077</td>
</tr>
<tr>
<td></td>
<td>077</td>
</tr>
<tr>
<td></td>
<td>077</td>
</tr>
</tbody>
</table>

Plot of Avg Force Change
ARA-521
Retest of R&R Bumpers

<table>
<thead>
<tr>
<th>SPEC-_ID</th>
<th>Avg Force</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>415.8</td>
</tr>
<tr>
<td></td>
<td>269.4</td>
</tr>
<tr>
<td></td>
<td>445.3</td>
</tr>
<tr>
<td></td>
<td>591.7</td>
</tr>
<tr>
<td></td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>800</td>
</tr>
</tbody>
</table>

New
Retest

Plot of Avg Force Change
ARA-521
Retest of R&R Bumpers
Bumper Update – R&R dummy bumper testing

Plot of Avg Force Change
ARA-520
Retest of R&R Bumpers

<table>
<thead>
<tr>
<th>SPEC-_ID</th>
<th>Avg Force</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>1000</td>
</tr>
<tr>
<td>2</td>
<td>1250</td>
</tr>
<tr>
<td>3</td>
<td>1500</td>
</tr>
</tbody>
</table>

- Dummy SPEC-_ID
- 054: 19
- 054: 2
- 054: 3
- 054: 4
- 077: 1
- 077: 11
- 077: 12
- 077: 16
- 077: 9

Plot of Avg Force Change
ARA-520
Retest of R&R Bumpers
Bumper Update – R&R dummy bumper testing

Plot of Avg Force Change
ARA-381-37
Retest of R&R Bumpers

- Dummy SPEC_ID 054
- 054
- 077
- 077

- SPEC_ID
- Avg Force
- 15
- 131.3
- 123.7
- 172
- 120
- 100
- 80

Plot of Avg Force Change
ARA-381-37
Retest of R&R Bumpers
Bumper Update – R&R dummy bumper testing

Plot of Avg Force Change
ARA-381-30
Retest of R&R Bumpers

<table>
<thead>
<tr>
<th>Dummy</th>
<th>SPEC-_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>054</td>
<td>1</td>
</tr>
<tr>
<td>054</td>
<td>12</td>
</tr>
<tr>
<td>054</td>
<td>14</td>
</tr>
<tr>
<td>054</td>
<td>30</td>
</tr>
<tr>
<td>054</td>
<td>33</td>
</tr>
<tr>
<td>077</td>
<td>21</td>
</tr>
<tr>
<td>077</td>
<td>35</td>
</tr>
<tr>
<td>077</td>
<td>36</td>
</tr>
<tr>
<td>077</td>
<td>43</td>
</tr>
<tr>
<td>077</td>
<td>44</td>
</tr>
</tbody>
</table>

Plot of Avg Force Change
ARA-381-30
Retest of R&R Bumpers
Bumper Update – R&R dummy bumper testing

Plot of Avg Force Change
ARA-227
Retest of R&R Bumpers

- SPEC-_ID
- Avg Force
- 52.9
- 40.4
- 46.2
- 58.7

Dummy SPEC-_ID
- 054 11
- 054 17
- 054 22
- 054 4
- 054 8
- 077 10
- 077 12
- 077 2
- 077 24
- 077 7
Bumper Update – R&R dummy bumper testing

Plot of Avg Force Change
ARA-220
Retest of R&R Bumpers

<table>
<thead>
<tr>
<th>Dummy</th>
<th>SPEC-_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>054</td>
<td>13</td>
</tr>
<tr>
<td>054</td>
<td>14</td>
</tr>
<tr>
<td>054</td>
<td>15</td>
</tr>
<tr>
<td>054</td>
<td>25</td>
</tr>
<tr>
<td>054</td>
<td>39</td>
</tr>
<tr>
<td>077</td>
<td>17</td>
</tr>
<tr>
<td>077</td>
<td>19</td>
</tr>
<tr>
<td>077</td>
<td>4</td>
</tr>
<tr>
<td>077</td>
<td>42</td>
</tr>
<tr>
<td>077</td>
<td>5</td>
</tr>
</tbody>
</table>

Plot of Avg Force Change
ARA-220
Retest of R&R Bumpers

Diagram showing the average force change for different SPEC-_ID values with color-coded markers for new and retest conditions.
Bumper Update

• R&R dummy bumpers did stiffen
 o Before or after R&R test series?
 o How long does stiffening take?
Bumper Update

Bumper Stiffness Gain
ARA-520 "standard" @ ~60 days

Avg Force

SPEC-_ID

L-1416 L-1421 L-1422 L-1423 L-1424 L-1425 L-1426 L-1427

827
538

SPEC-_ID

L-1416
L-1421
L-1422
L-1423
L-1424
L-1425
L-1426
L-1427
Bumper Update

Plot of Avg Force Change @ 7 Months
ARA-520 Standard

Index

1500
1250
1000
750
500

Plot of Avg Force Change @ 7 Months
ARA-520 Standard
R&R Dummies Bumper and Testing Timeline

- **February-2012**: Bumpers Tested for R&R Dummies (Huron)
- **April-2012**: Bumpers Installed in R&R Dummies
- **July-2012**: R&R Dummies Shipped to BAST
- **September-2012**: Vehicle Seat R&R Sled Series (BAST)
- **October-2012**: R&R Dummies Tested
- **November-2012**: R&R Dummies Post Tested Dummy 54 (Huron)
- **December-2012**: R&R Dummies Tested (BAST)
- **February-2013**: R&R Dummies Post Tested (BAST)
- **March-2013**: R&R Dummies Post Tested (Heidelberg)
Bumper Update

• Using retest compressions to reset corridors
 o Think from timeline bumpers stiffened between original compression and BAST sled series
 o Using Green corridors as targets for aged bumpers

• VRTC dummies
 o Looking for aged bumpers that meet green corridors
Bumper Update

• Still in progress
 o Comparing durometer to compression
 o Can durometer indicate stiffening
 ‣ Data not ready to present (maybe tomorrow)
 o Investigating material stiffening
 o More conclusive proof of best method for control
 ‣ R&R studies on durometer and compression
 o Process to assure stable parts for installation into dummies
Bumper Update

• Might have more info by tomorrow
 o Durometer vs compression on a variety of batches
 o Aging studies on a variety of batches
 o Plan for R&R studies
 o Detailed plan for finishing test development by April
 o Selection of bumpers for VRTC dummies

• R&R studies durometer & compression
 o Shooting for end next week
Finishing dummies for Injury Criteria Development

• VRTC dummies
• Need to get bumpers right
 o Looking for aged bumpers hitting aged R&R bumper targets right now
• Finish testing to certification tests and proposals
 o Assuming we find enough bumpers hitting new targets
Test

Documentation Discussion

Discuss 1/27/14 Draft?
Questions?