

Japan Position on Shorten Test Procedure (STP) for PEV

7th WLTP E-Lab. SG Meeting 9~11 MAR. 2015 Brussels, Belgium Prepared by JAPAN

1. Why STP is necessary ?

 Increase battery capability
 Increase varieties of testing

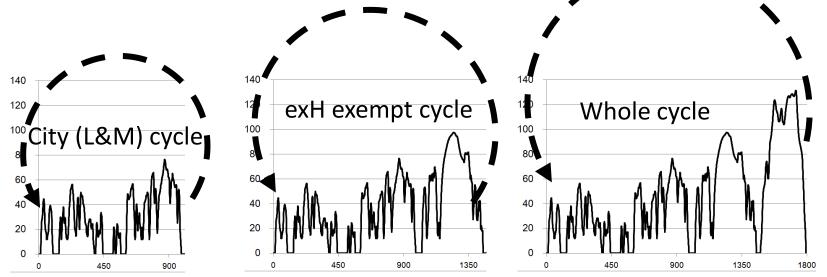
 (Auxiliary devices, low temp., MAC and so on)

 Increase sales models
 New feature of test data handling

Increase testing burden

i.e. Tesla Model S
It takes approximately 47hours within 5 days
to obtain City, L~H and L~exH phases
Data handling : indexes/normalization,,,

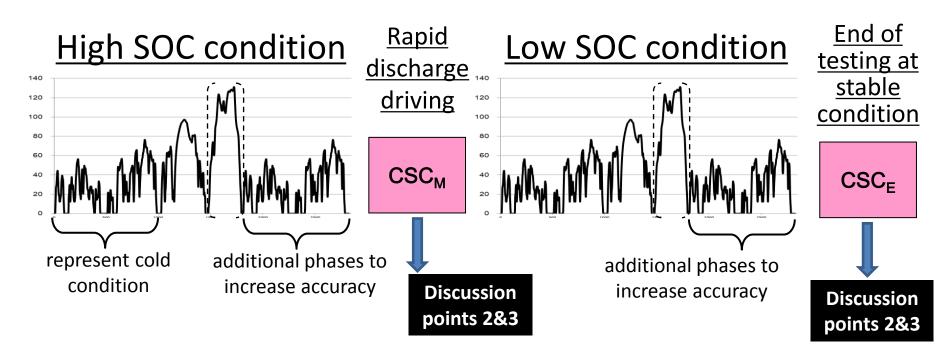
- 1 -


WLTP should NOT be barrier for advanced technologies and should be flexible for new features of test procedure.

<reference>

US : already adopted, manufacture use STP without pre-approval by EPA JPN : will be adopted on 26th March 2015, then can be used from April

2. Concept of STP (1)


Current gtr requires multiple tests for range and electric consumption measurement.

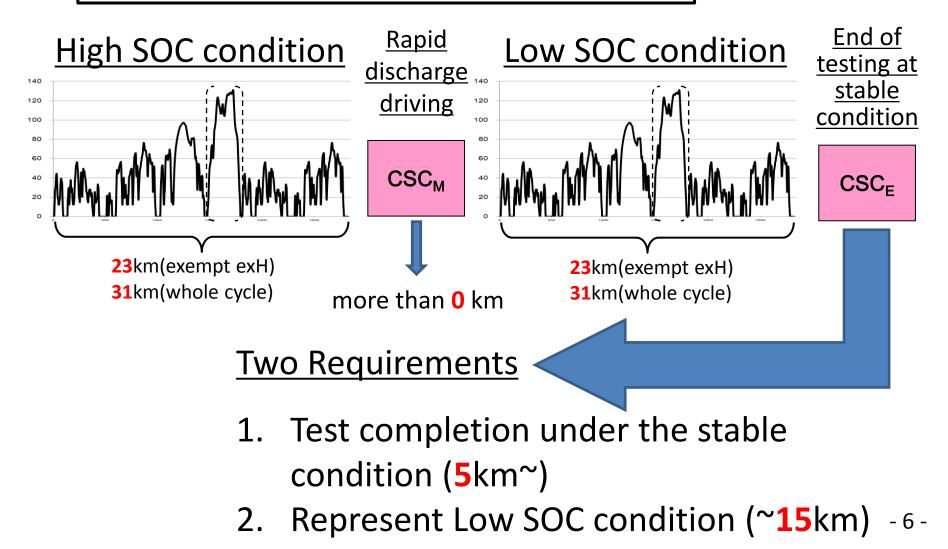
Repeat until end of test criteria has reached

2. Concept of STP (2)

Measure energy consumption per phase, CSCM and CSCE. Then calculate "Usable Battery Energy (UBE)" AER @phase(s)* = Distance @phase(s) X $\frac{UBE}{Energy Consumption_{@phase(s)}}$ *) phase(s) : each phase, City, exempt exH and whole cycle

Single test covers obtaining performance value under multiple cycles

3. Features of STP

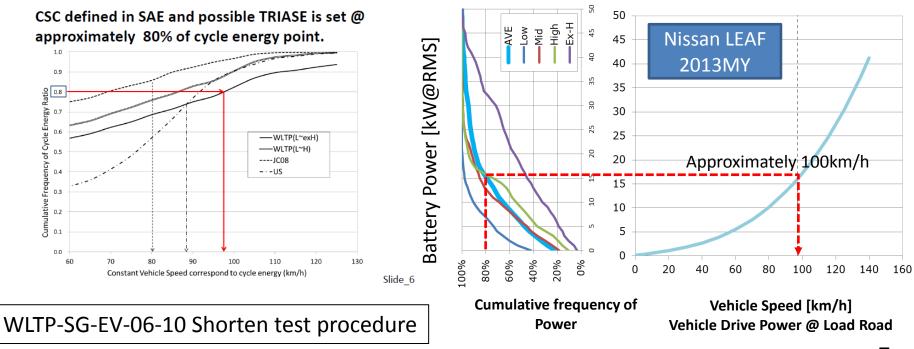

		Current	STP	
1. Accuracy		∆final SOC is up to end of test unstable driving index/driver exhaustion/different drivers/driver break due to long test duration	O final SOC is stable better driving index/less driver exhaustion/a few break due to limited test duration	
2. Repeatability		Δ less repeatability due to uncertain factors(see above)	O better repeatability due to concentrated test and include multiple phase driving(L/M : 4, H/Ex-H : 2 times)	
3. Test duration	Each phase (L/M/H/exH)	O obtain from calculation (no test is required)	O single test covers all requirement (each phase range, combined phase range –L+M, L+M+H, L+M+H+Ex-H) (Tesla model S : approx. 3.5hours)	
	L+M	× additional test is required (Tesla model S : approx. 25.0hours)		
	L+M+H	× additional test is required (Tesla model S : approx. 16.0hours)		
	L+M+H+Ex-H	Δ Test (Tesla model S : approx. 5.5hours)		
4-1. Combined approach		Δ no linear correlation between range and cycle energy	Oeasy to apply, linear correlation between UBE and cycle energy	
4-2. Normalization		× not available	Oeasy to apply, UBE method is kind of normalization - 4 -	

4. Japan position on Discussion points

Discussion points		US	JPN TRIAS(Draft)	JAPAN Positions @ WLTP	
		SAE J1634		exH exempt cycle	whole cycle
1	Minimum Range for STP	>60 mile	> _{approximately} 70 km =(JC08x4)x2 + 5km =70.4	>55 km (L/M/H/L/Mx2)x2 + 5km =50.7	>70 km (L/M/H/exH/L/M)x2 + 5km =67.2
2	CSC speed	55mph	81.6km/h	80km/h	100km/h
3	CSC Duration	CSCE:20% or less than travel distance	$CSC_{E} = 5km \text{ or}$ 10% of total CSC $CSC_{M} = total$ $CSC - CSC_{E}$	CSC _E = 5 ~ 15 km CSC _M = rest of phase driving and CSC _E	
4	Battery load at CSC	No description in the paper	N.A.	Discharge capacity doesn't rely on voltage and current (a few impact on UBE measurement under the different constant speed)	
5	Acceptable error	_		Data provided by ACEA and JAMA indicates that STP has good correlation with current test procedure.	

5. Minimum Range for STP applicability

Exempt exH cycle: no less than 55 kmWhole cycle: no less than 70km



6. CSC speed

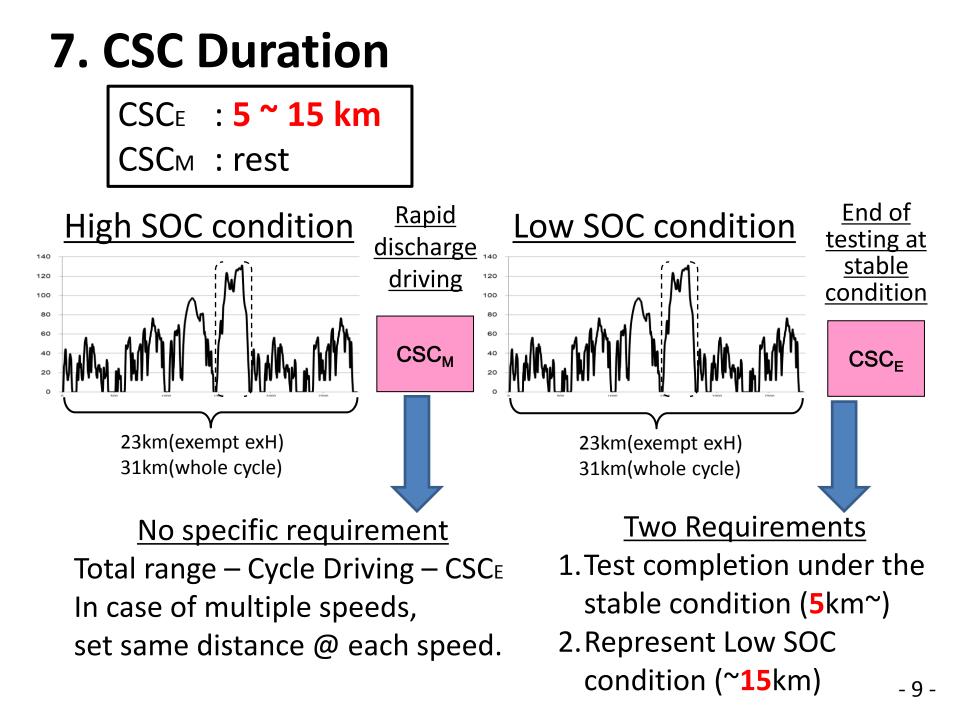
Exempt exH cycle: 80km/hWhole cycle: 100km/h

correspond to <u>approximately 80% of cycle energy</u>

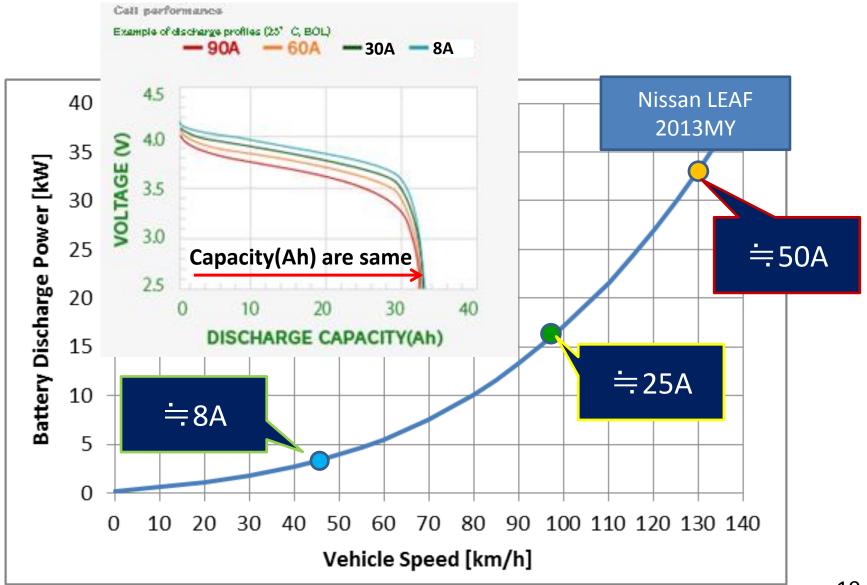
satisfy "rapid discharge" and "representativeness"

6. CSC speed (alternative)

Possible alternative CSC speed


- 1. Manufacture recommended speed
- 2. CSCM : CSCE -10, CSCE, CSCE +10 km/h

CSCE : 100 for whole cycle, 80 for exempt exH

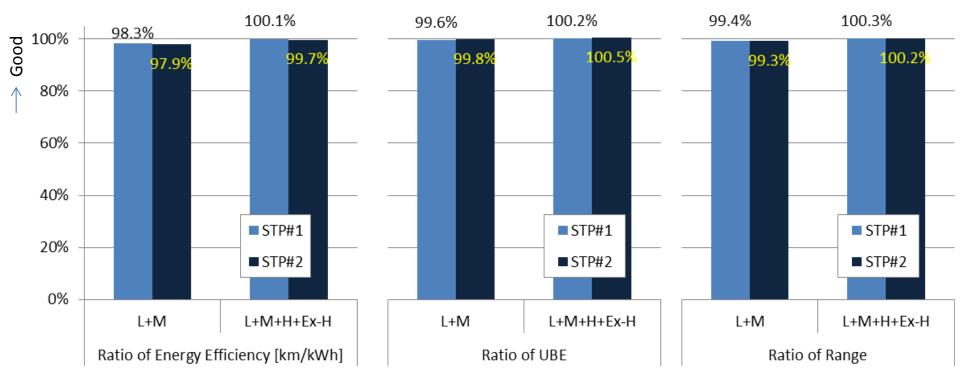

3. CSC_M : $2^{nd}/3^{rd}/4^{th}$ highest reference speed

CSC_E : 3rd highest reference speed

4. others

8. Battery load at CSC

9. Acceptable Error


Previous study indicates that Shorten Test Procedure works well for WLTP

(please refer WLTP-DTP-E-Labproc_082 WLTP-DTP-E-LabProc_088 WLTP-SG-EV-04-10 WLTP-SG-EV-06-09rev1)

(ref.) Validation Results_1

Conditions : CSC Speed : CSCм =CSCE =97km/h CSCE Duration : 55km CSCM Duration : 25km

Test vehicle: 2013MY Nissan LEAF

(ref.) Validation Results_2

Shortening of test procedure: : Kangoo ZE Simulation results

Test mass Low: 1722 kg

- Test time reduce from 180 minutes to 140 minutes (-22%)
- The 'scalling factor' is not used for 'city cycle range' and 'complete WLTC range' estimation

CONFIDENTIEL PROPRIÈTÉ RENAULT

21

Test mass High: 1939 kg

(ref.) Validation Results_3

Shortening of test procedure: Zoe Simulation results

- Test time reduce from 230 to 160 min (-31%)
- The 'scaling factor' is not used for 'city cycle range' and 'complete WLTC range' estimation

PROPRIÉTÉ RENAULT

Renault presentation discussed and agreed on within ACEA WLTP EV Group

22

- 14 -

Conclusion : Shorten Test Procedure for PEV is ready to be adopted due to its efficiency and accuracy.