Camera-Monitor Systems as a Replacement for Exterior Mirrors in Cars and Trucks

(Schmidt, Hoffmann, Krautscheid, Bierbach, Frey, Gail \& Lotz-Keens)

Maxim Bierbach, Alexander Frey

IGCMS-II - 7th session
Gaimersheim, 28.01.2015
Bundesanstalt für Straßenwesen
Federal Highway Research Institute

Outline

- Background
- Technical Aspects
- Aspects of Human Machine Interaction
- Conclusion

Background

- Camera Monitor Systems may replace classical outside rearview mirrors (ORM) ...
- ...allowing new design concepts / reduction of vehicle width
- ...allowing a reduction of aerodynamic drag
- Evaluation of technical aspects as well as aspects concerning human machine interaction (HMI) in comparison to a conventional outside rearview mirror necessary
-> Core of this study
- Adaption of UN-R 46 required

Technical Aspects

- Field of vision
- General day and night characteristics
- Image reproduction
- Glare
- Adjustability of camera and display

- Reliability
- Weather
- Robustness

Field of vision
$\square \square \square \square \square \square \square \square \square$

Direct sunlight

Direct sunlight

Rain

Night

Dirt (2)

Error in image caused by electromagnetic radiation

Loss of image caused by electromagnetic radiation

Further technical aspects

- Ability to cope with snow and fog depend on distance to very bright objects (headlights)
- Neither mirror nor CMS deliver good results in heavy rain
- Fogging and time delay due to low temperature
- No problem with heat (up to $80^{\circ} \mathrm{C}$)
- CMS has advantages due to amplifying contrast during night time
- CMS has disadvantages due to limited maximum brightness of monitor at day time

Conclusion - Technical Aspects

- Both solutions show advantages and disadvantages.
- Some disadvantages of the CMS should be addressed by the specification of technical requirements:
- Electromagnetic compatibility must be ensured
- Quick adaption to changes in ambient brightness necessary
- Provide good colour, grey values and contrast reproduction, minimisation of artifacts
- Representation with no time delay
- Detection and immediate indication of image losses or even better, ensuring that image losses do not occur at all
- Frost and condensation protection (-> heating of the camera)
- Housing of monitor to avoid reflections

Aspects of Human Machine Interaction

- Results of the literature analysis:
- Effect of varying display position on drivers' situation awareness (Endsley, 1995) not known:
- Information closer to the central field of view
- Change of highly automated use patterns may have impact on assessment of relevant information
- Depth information is reduced
- No possibility to adapt field of view by head movements

Aspects of Human Machine Interaction

2 study parts: Car and Truck

Research question

Is there any difference in estimating distance and velocity when using ORM or CMS?

Display Positions

Car Study Part 1

Distance- and Velocity Estimation (,Last Safe Gap-Method")

- Drivers (EGO) observe approaching vehicle (REF) through outside rearview mirror (RVM) or camera monitor system (CMS)
- Button press at the latest moment where it is considered safe to pull out in front of the approaching vehicle

Car Study Part 1

Results: „Last Safe Gap-Method" ($N=34$, within subject)

- The faster the REF-vehicle, the larger the „last safe gap" $(F(2,66)=39.752, p=.000)$
- Tendency of larger gap using CMS (F(1,33) $=3.646$, n.s., $p=.065)$
- No interaction between velocity and used device $(F(2,66)=1.187$, n.s., $p=.310)$

No difference in distance and velocity estimation

Car Study Part 2: Highway Driving (BAB 4)

Research questions

- What is the prefered position of the CMS?
- Does gaze behaviour change when using a CMS in comparison to using an outside rear-view mirror?

Car Study Part 2: Highway Driving (BAB 4)

measurements:

- gaze detection
- questionnaire

Lane change (start of overtakting maneuver)-10 to 0s

Lane change (end of overtakting man.) -10 to 0s

Car Study Part 2: Highway Driving (BAB 4)

Highway Track
(Filtering Situations on Motorway)

Source: Google Maps

Car Study Part 2: Highway Driving (BAB 4)

Results: Subjective Preference of Display Position

- The positions close to the dashboard are strongly preferred.
- Some subjects prefer that information from the left are displayed on their left side.
- In principle, displaying the information of the right CMS closer to the driver seems to be an acceptable solution.

Car Study Part 2: Highway Driving (BAB 4)

Results: Filtering into Traffic: Glances to Rear Vision Device

- Number of glances on CMS3 significantly higher than on ORM

CMS position 3 is more popular

Gaze behaviour changes in comparison to ORM only in CMS 3

Car Study Part 2: Highway Driving (BAB 4)

Results: Lane Change (left): Glances to Rear-Vision Device

Number of Glances

No significant difference in gaze behaviour

Research questions

- How do subjects estimate distances in the CMS of the truck?
- How does the perception of special situations in truck driving is influenced by the CMS?
- Are there any problems of acceptance?

Method

- Total sample: $N=10$, male
- Mean age: 51.1 years $(S E=2.4)$
- The sample was controlled of active truck using and truck driving experience, driver license class C or CE
- Every subject fulfilled the minimum requirements for visual performance according to Annex 6 of the German Driver Licensing Regulations.
- Test procedure in 2 experiments
- Test drive on a BASt prouving ground (using of OVM and CMS), 20 minutes
- Test drive in public traffic
» Overall duration: 2 hours

Experiment 1 (Distance estimation)

- Approaching two pylons to the right and left of the end of the trailer in a selected distance of 4 m
- Using ORM and CMS

Results (Distance estimation)

- Short distances (4 m) are clearly overestimated when using the exterior mirrors ($M=7.5 \mathrm{~m}$, t-test vs. $4 \mathrm{~m}: p<.01$).

There is no significant overestimation when using CMS

Experiment 2 (Drives in real traffic)

- Two drives (the first drive offers the subjects to get used to the truck and CMS in real traffic).
- In the second drive, the project manager noted spontaneously statements about the CMS and asked standardized questions about perception.
- Perception of different speeds
- Driving in a roundabout
- Recognition of distant objects
- Total length of the route amounts to 57 km

Truck Study

Results: Drives in real traffic with CMS (recognition)

Results: Drives in real traffic with CMS (recognition)

Results: Drives in real traffic with CMS (recognition)

Results: Drives in real traffic with CMS

$>$ The image quality of the CMS was assessed worse to the exterior mirrors by the majority of the subjects.

Summary

- In general, it is possible to distinguish between three investigated velocities using ORM as well as CMS in the car. CMS leads to a comparable performance as a conventional ORM.

$$
\text { » It was only tested to } 50 \mathrm{~km} / \mathrm{h}
$$

- There seem to be no large differences in the basic parameters of gaze behavior.
- A low position seems to be avoided by the drivers' (reduction in gaze duration).
- An increased number of gazes for position 3 might indicate an increased accessibility of the information in this position, which is also subjectively most preferred by the participants in questionnaires.
- Some subjects prefer that information from the left are displayed on their left side.
- In principle, displaying the information of the right CMS closer to the driver seems to be an acceptable solution.

Car and Truck Study

Summary

- In the truck driving task (rearward), there might be a better distance estimation in comparison to exterior mirrors...
- ...in real traffic
- Subjects addressed a low perception of distant objects
- Subjects indicated a difficult recognition because of contrast and colour quality
- No subject felt the need to unfold mirrors again

Thank you for your attention!

Camera-Monitor Systems as a Replacement for Exterior Mirrors in Cars and Trucks

(Schmidt, Hoffmann, Krautscheid, Bierbach, Frey, Gail \& Lotz-Keens)

For citation please refer to the report

