Developing test procedures for European eCall

Matthias Seidl
25-27 February 2015
TRL - Transport Research Laboratory

- Established 1933, privatised in 1996
- 320+ staff
- Head office in Wokingham, Berkshire, UK
 - Offices in Scotland, Wales, Abu Dhabi, Qatar, Ethiopia
 - Project offices overseas
- Non profit distributing company
- Impartial and commercially independent transport research, consultancy and testing
TRL’s involvement in eCall

- TRL recently completed a project for the European Commission (EC) regarding eCall type-approval: http://ec.europa.eu/DocsRoom/documents/5601/attachments/1/translations/en/renditions/native

- This project (eCall Phase 1) identified aspects that needed to be considered for the type-approval regulation of eCall In-vehicle Systems (IVS) and discussed options

- eCall Phase 2 is the follow-on project to support the EC with developing specific type-approval test procedures

- These will include test procedures for eCall in-vehicle systems (IVS) and vehicles containing these components
Task 1 – Resistance of eCall IVS to severe crashes

- Motivation
 - Demonstrate that the eCall In-Vehicle System (IVS) can withstand collisions of higher severity than experienced in full-scale crash tests.
 - Most reliable way would be in-situ testing in a new high severity full-scale crash test.
 - More cost-effective way is a high severity component-level test used in conjunction with the existing full-scale tests (UN R94 and UN R95).

- Task
 - Develop a component-based deceleration test procedure for eCall IVS.
 - General outline: Expose the components under test to a defined deceleration for a defined period of time (using deceleration sled/drop rig).
 - Develop an operability check procedure to be performed after the deceleration test.
Task 1 – Resistance of eCall IVS to severe crashes (cont.)

- **Approach**
 - Define an appropriate severity level and deceleration corridor.
 - Define the components of an IVS that are required and feasible to include on a component test facility.
 - Define requirements for test equipment (deceleration facility, operability test equipment).
 - Define operability check procedure and pass/fail criteria (e.g. successful test call using PSAP simulator via long number or simulated network).
 - Conduct testing to demonstrate feasibility, repeatability and reproducibility of the test procedure.

- **Output**
 - Draft technical annexes ‘Requirements’ and ‘Test procedure’ for proposed European legislation.
Task 2 – Full-scale crash test assessments

- **Motivation**
 - Ensure the survivability of the eCall system after a collision.
 - Assess all of the components in their final mounting situation and configuration in the vehicle.

- **Task**
 - Define a method to assess eCall systems in full-scale crash tests.
 - Minimize testing costs: Procedure to be carried out alongside UN R94 and UN R95 tests.
 - Assess the ‘safe-zone concept’ proposed at UN level.
Task 2 – Full-scale crash test assessments (cont.)

- **Approach**
 - Desk-based task
 - Define how to integrate the steps necessary for eCall preparation, testing and operability assessment into existing full-scale tests.
 - Assess capability for eCall systems to operate in test houses and define the exact observations to be made alongside the crash test.
 - Define necessary operational checks and specify pass/fail criteria.
 - Define test equipment specifications.
 - Confirm with stakeholders that the defined procedure is fit for purpose to be carried out during full-scale crash tests.

- **Output**
 - Draft technical annexes ‘Requirements’ and ‘Test procedure’ for proposed European legislation.
Task 3 – Crash resistance of audio equipment

- **Motivation**
 - To allow an eCall voice connection speaker(s) and microphone(s) need to survive a collision.
 - Survival of the audio equipment can be assessed alongside the full-scale crash tests.

- **Task**
 - Define an inspection procedure to be carried out after full-scale crash tests (UN R94 and UN R95).
 - The goal is to verify whether the components specified by the manufacturer to be used for eCall (i.e. the crash-hardened components) remained operable.
Task 3 – Crash resistance of audio equipment (cont.)

- **Approach**
 - Determine which aspects of the audio equipment need to be assessed and which level of operability is required.
 - What would be suitable and feasible approaches for operability testing? For example: A subjective test done by human testers or an automated procedure?
 - Draft operability check procedure.
 - Confirm with stakeholders that the defined procedure is fit for purpose to be carried out after a full-scale crash test.

- **Output**
 - Protocol to be added to the technical annexes produced for Task 2 (Full-scale crash test assessments).
Task 4 – Co-existence of TPS

- **Motivation**
 - Third-Party Services (TPS) will allow offering value-added services to customers.
 - If the TPS-IVS should fail to make connection, it needs to switch to the 112-based eCall IVS.
 - Type-approval testing needs to facilitate systems which switch between one mode of operation and the other.

- **Task**
 - Only 112-based eCall functions will be mandatory, hence TPS-IVS will not be assessed.
 - Define a mechanism to demonstrate to the Technical Service that the TPS-IVS switches to the 112-based eCall IVS in case no connection to the TPSP can be established.
 - Demonstrate that a TPS service can be interrupted sufficiently to perform all of the necessary tests on 112-based IVS for type-approval.
Task 4 – Co-existence of TPS (cont.)

Approach

- Gather knowledge on switching function from technical experts (e.g. TPS-IVS suppliers).
- Investigate suitable forms of documenting the automatic switch function towards the Technical Service.
- Relevant provisions in prEN 16454, Sections 9.8.7.3 and 9.8.7.4 will be taken into account.
- Consider implications for the full-scale testing protocol and develop protocol to ensure successful testing of the 112-based systems.

Output

- Protocol to be added to the technical annexes produced for Task 2 (Full-scale crash test assessments).
Task 5 – Automatic triggering mechanism

- Motivation
 - Latest draft of eCall Regulation: An automatic eCall should be triggered by a "severe accident, detected by activation of one or more sensors or processors within the vehicle".
 - Awaits translation into a specific type-approval demonstration procedure.

- Task
 - Derive a mechanism for manufacturers/suppliers to demonstrate to a Technical Service that their system will trigger in potentially injurious situations.
 - This could be a dossier of information provided to Technical Service; for example showing a link between airbag deployment and eCall triggering.
Task 5 – Automatic triggering mechanism (cont.)

- **Approach**
 - Desk-based task
 - What information is sufficient as proof that automatic triggering requirements are fulfilled?
 - What would be necessary and sufficient to convince a Technical Service of the link between airbag deployment and eCall triggering?*
 - Prepare suggestion for required information.
 - Gather suggestions and opinions from stakeholders.
 - Perform technical interpretation of stakeholder input.
 - Convert into a working template for use in the type-approval process.

- **Output**
 - Template of information to be provided to the Technical Service.

*Note: This shall not restrict automatic eCalls to operate only in collisions where an airbag deployed.
Task 6 – In-vehicle system (IVS) self-test

- **Motivation**
 - Vehicle user can detect malfunctions of the eCall system only with a self-test and a malfunction indicator.
 - The extent of the required self-test might influence the severity of other requirements.

- **Task**
 - Define a list of the components that need to be monitored by the self-test function.
 - Define the failure modes expected to be detected.
 - Define suitable paper-based declaration for the Technical Service to provide sufficient assurance that the self-test requirements are fulfilled.
Task 6 – In-vehicle system (IVS) self-test (cont.)

Approach
- Which components to include in the self-test: NAD, GNSS module, accident detection sensors, antennas, battery, microphone, speaker, etc.?
- Which failure modes: Components connected; integrity of electric circuits; more advanced individual tests (battery state of charge, battery capacity); integrity of the software image?
- Prepare suggestion for components, requirements and required documentation.
- Gather suggestions and opinions from stakeholders.
- Perform technical interpretation of stakeholder input.
- Convert into a working template for use in the type-approval process.

Output
- Template of information to be provided to the Technical Service.
Thank you

Jolyon Carroll
Senior Researcher
Engineering and Assurance
Tel: +44 1344 770564
Email: jcarroll@trl.co.uk

Matthias Seidl
Researcher
Engineering and Assurance
Tel: +44 1344 770549
Email: mseidl@trl.co.uk
Independent Transport Research, Consultancy & Testing

Creating the future of transport