Update: Deceleration pulse corridor for AECD testing

Matthias Seidl
31 March–02 April 2015
Simplifying the proposed corridor

- At the 7th AECS meeting TRL presented a proposed deceleration corridor based on full-width impact tests (AECS-07-05, Page 14)
- Following feedback from the experts the shape of the proposed corridor was simplified:
 - Four points deleted (B, C, H and I)
 - All other points identical: Same peak deceleration levels and duration

AECS 7 proposal:

![AECS 7 proposal graph]

AECS 8 proposal (simplified):

![AECS 8 proposal graph]

- Simplified corridor enables easier replication of pulse with existing test sleds
Proposed Deceleration Corridor (simplified)

100\(g\), 22 ms
\(\Delta v = 154\) km/h

85\(g\), 4 ms
\(\Delta v = 60\) km/h

60 ms
Proposed Deceleration Corridor (simplified)

Proposed Deceleration Corridor

Based on 56 km/h, rigid barrier, full-width impact tests, safety factor 1.3, simplified shape

<table>
<thead>
<tr>
<th>Point</th>
<th>Time (ms)</th>
<th>Deceleration (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>34</td>
<td>85</td>
</tr>
<tr>
<td>C</td>
<td>38</td>
<td>85</td>
</tr>
<tr>
<td>D</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>F</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>G</td>
<td>47</td>
<td>100</td>
</tr>
<tr>
<td>H</td>
<td>60</td>
<td>0</td>
</tr>
</tbody>
</table>
Sled testing of telematics units: Setup

- TRL performed sled testing using the simplified pulse corridor
- Sled specification: Deceleration sled; 230 kJ maximum energy; 12 bungees; 1.8 metres free run
- Vehicle telematics units (containing GSM and GNSS modules, SIM card holders, internal batteries, capacitors, etc.) were used as a substitute AECD units
- 4 test runs with 12 samples (4 different unit designs, 3 samples of each)

TRL thank Stadium United Wireless for providing test samples and support for this programme.
Sled testing of telematics units: Results

- Proposed deceleration levels were achieved easily
- Peak decelerations were between 98 g and 104 g

Example trace of TRL test G225I11:

\[\Delta v: 99.0 \text{ km/h} \]
\[\text{Peak deceleration: 99.8 g} \]

- The units were inspected post-test both, visually (for bent, displaced or lifted-off components) and electronically (current consumption, GPS/GSM functionality)
- All 12 samples of telematics units passed the inspections, i.e. remained operable after being subjected to the proposed deceleration pulse.
Conclusions

- The proposed maximum deceleration of circa 100 g was achieved without issues on an existing standard deceleration sled.
- The proposed pulse corridor was wide enough to achieve a valid deceleration pulse with limited effort for pulse-tuning.
- The test setup used allowed the number of sled tests required to be minimised: Three orientations of each system were tested simultaneously.
- All 12 samples of telematics units tested proved able to withstand the test deceleration pulses of circa 100 g.

This shows that the proposed deceleration corridor can be replicated easily and AECD control units should be able to withstand it.
Thank you

Update: Deceleration pulse corridor for AECD testing

AECS 8th meeting
31 March–02 April 2015

Matthias Seidl
Tel: +44 1344 770549
Email: mseid@trl.co.uk
Independent Transport Research, Consultancy & Testing

Creating the future of transport