

Independent Transport Research, Consultancy & Testing

Creating the future of transport

EC child safety projectproposal for testing

Prepared by Jolyon Carroll and Mark Pitcher 6 May 2015

CRS 49-05e – Items to be reviewed for Phase 2

- Q dummies issues Leader: TRL (Jolyon)
 - Q10 Size
 - Abdominal criteria
 - Chest behaviour and deflection
 - Dummies behaviour
 - Submarining
 - Drawing
- Test procedure Leader: TRL (Jolyon)
 - Severity
 - Test bench

Q dummies issues

Basis for proposed tests for European Commission project

Issue Response Q10 Size Experience with the dummy will allow the group to set reasonable values for limits on head excursion. Supporting the work of the chest Abdominal criteria / Chest behaviour and abdomen injury criteria task and deflection force, experience with new sensors may support adoption of sensible limits for regulation Still need to look at belt slippage Dummy behaviour across chest – are we removing the need for belt guides? Submarining Building on the succes of the Q6 pelvis inserts, test using these and Q3 and Q10 equivalents

Dummy behaviour

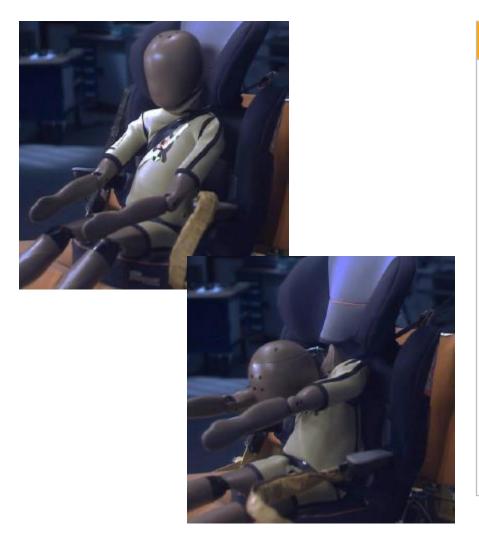
Submarining

Lack thereof

- We understand that it has been difficult to generate submarining with Q-Series dummies in R129 conditions
- Initial tests with Q6 pelvis inserts (Dorel) show promise in addressing this
- Would equivalent products also work with Q3 and Q10?
 - Confirm results with Q3, Q6 and Q10

Abdomen loading and submarining

- Need to gain experience using the Q10
 - This will help with evaluation of thresholds
 - It will also provide information to aid discussions on Q10 size
- Need to find a seat where submarining is a realistic expectation
 - Based on experience with R44 testing and P10 dummy
 - TRL can modify a seat to show characteristics we want to avoid


Test Matrix – Abdomen loading and submarining

Test	CRS	Dummy	Dummy Extras	Pulse	Test Environ.	Result
1	Submarining CRS (w/o ISOFIX)	P10	-	R129	R44	No Submarining
2	Submarining CRS (w ISOFIX)	P10	-	R129	R44	Submarined
3	Submarining CRS (w ISOFIX)	P10	-	R129	R129	Submarined
4	No CRS	P10	-	R129	R44	No Submarining
5	Submarining CRS (w ISOFIX)	Q10	Abdomen sensors and Pelvis insert	R129	R129	Planned in June
6	Good Belt Guidance Booster Seat	Q10	Abdomen sensors and Pelvis insert	R129	R129	Planned in June

Dummy behaviour

Chest behaviour and deflection

Belt slippage

- Understand tendency for shoulder belt to move towards the neck
- This means less risk of twisting out of the belt
 - Any need for effective belt guides anymore?
- Also moves loading away from chest deflection sensor
 - Peak measured deflection coincides with chin to chest contact
 - Second sensor being used in chest and abdomen injury group

Belt slippage and chest deflection measurements

- Hoped that injury risk functions for chest deflection come from chest and abdomen injury criteria group
 - Unlikely to offer definitive injury risk function this year
 - May offer concept that could be used to identify inappropriate loading of the chest
- Still need to investigate the general kinematics of the dummy
 - P-Series tended to 'roll out' of belt
 - Q-Series less inclined to roll out
 - Shown that basic belt guide keeps shoulder belt sliding to the neck
 - What about booster cushion or no CRS?

Chest behaviour and deflection

Test	CRS	Dummy	Dummy Extras	Pulse	Test Environ.	Result
7	Booster cushion	P10	-	R44	R44 – no offset of CRS on bench	Planned in June
8	Booster cushion	P10	-	R129	R129	Planned in June
9	Booster cushion	Q10	Abdomen sensors & Pelvis insert	R129	R129	Planned in June
10	Booster cushion	Q10	Abdomen sensors & Pelvis insert	R129	R129 with extreme D-ring position	Planned in June
11	No CRS	Q10	Abdomen sensors & Pelvis insert	R129	R129	Planned in June
12	No CRS	Q10	Abdomen sensors & Pelvis insert	R129	R129 with extreme D-ring position	Planned in June
13	Booster seat	Q10	Abdomen sensors & Pelvis insert	R129	R129	Planned in June
14	Booster seat	Q10	Abdomen sensors & Pelvis insert	R129	R129 with extreme D-ring position	Planned in June

Chest behaviour and deflection

Test	CRS	Dummy	Dummy Extras	Pulse	Test Environment	Result
15	Booster cushion	P6	-	R44	R44	Belt remained on shoulder
16	Booster cushion	Q6	2 nd deflection sensor + abdomen sensors and pelvis inserts	R129	R129	Planned in August
17	Booster cushion	Q6	W	R129	R129 with extreme D-ring position	Planned in August
-	No CRS	Q6	"	R129	R129	DOREL test demonstrated submarining
18	No CRS	Q6	W	R129	R129 with extreme D-ring position	Planned in August
19	Booster seat	Q6	w	R129	R129	Planned in August
20	Booster seat	Q6	W	R129	R129 with extreme D-ring position	Planned in August

Chest behaviour and deflection

Test	CRS	Dummy	Dummy Extras	Pulse	Test Environment	Result
21	Inflatable	Р3	-	R44	R44	Abdomen belt remained in place Shoulder belt stayed on shoulder
22	Inflatable (guides not used)	Р3	-	R44	R44	Abdomen belt lifted into lower abdomen Shoulder belt stayed on shoulder
23	Inflatable	Q3	2 nd deflection sensor + abdomen sensors and pelvis inserts	R129	R129	Planned in August
24	Inflatable	Q3	W	R129	R129 with extreme D-ring position	Planned in August
25	Inflatable	Q3	"	R129	Additional test for pragmatic belt slippage assessment	Planned in August

Belt slippage and chest deflection measurements

- Request stakeholder data for testing experience with Q3, Q6, Q10:
 - Non-integral restraints (Phase II)
 - Without a CRS
 - Poorly performing CRS (development work?)
 - In R129 test environment
 - In body shell/vehicle test environment
 - Belt interaction solutions (thank you, Dorel)
 - Chest and abdomen loading measurements

Thank you

Jolyon Carroll

Senior Researcher TRL

jcarroll@trl.co.uk

Mark Pitcher

Technical Specialist – Child Safety Centre TRL

mpitcher@trl.co.uk

