

SIMULATIVE VALIDATION OF COMBINED APPROACH FOR OVC-HEV.

WLTP-SG-EV-08-05-rev1

WLTP – COMBINED APPROACH FOR OVC-HEV. FURTHER VALIDATION ISSUES OF THE COMBINED APPROACH.

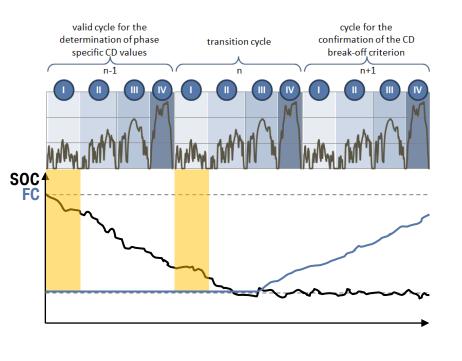
Validation of the calculation method for the CD-phase specific values R_{CDa}, EAER and EC calculated from the charge-depleting test.

► Validation of the combined approach for the phase specific values R_{CDa}, EAER and EC calculated from the charge-depleting test.

► Validation of a adjusted method that allows the OVC-HEV interpolation family building with different R_{CDC} between vehicle low and high.

WLTP – COMBINED APPROACH FOR OVC-HEV. CALCULATIONS FOR PHASE SPECIFIC CD VALUES.

Required phase specific CD values and calculation method according to the proposal from Japan:


• Equivalent all electric range EAER:
$$EAER_p = \frac{\left(M_{CO2,CS,p} - M_{CO2,CDavg,p}\right)}{M_{CO2,CS,p}} \cdot d_p \cdot n_p \Rightarrow n_p = \operatorname{int}\left(\frac{R_{CDa,p}}{d_p}\right) + 1$$

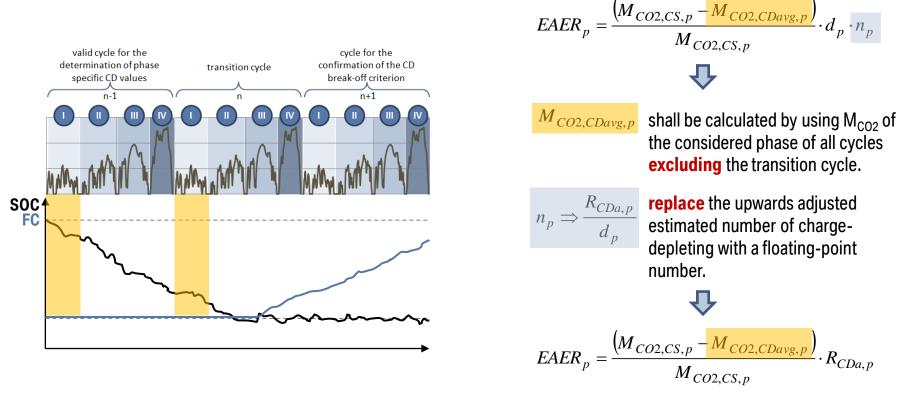
• Electric energy consumption EC: $EC_p =$

$$EC_p = \frac{E_{AC}}{EAER_p}$$

• Actual charge depleting range R_{CDa}:
$$R_{CDa,p} = \frac{E_{AC}}{EC_{AC,p}} \Rightarrow EC_{AC,p} = \frac{\sum_{j=1}^{n-1} EC_{AC,p,j} \times d_{p,j}}{\sum_{j=1}^{n-1} d_{p,j}}$$

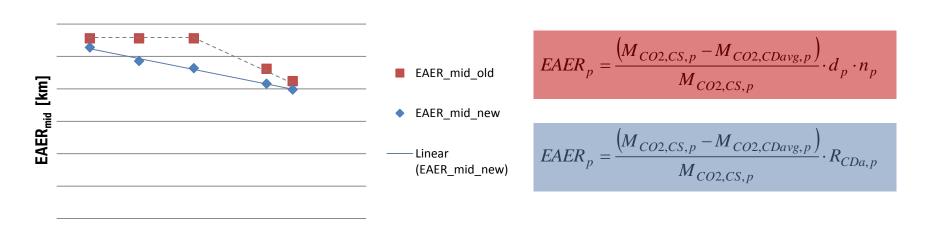
WLTP – COMBINED APPROACH FOR OVC-HEV. PHASE SPECIFIC EQUIVALENT ALL ELECTRIC RANGE.

$$EAER_{p} = \frac{\left(M_{CO2,CS,p} - M_{CO2,CDavg,p}\right)}{M_{CO2,CS,p}} \cdot d_{p} \cdot n_{p}$$


- *M*_{CO2,CDavg,p} shall be calculated by using M_{CO2} of the considered phase of all cycles up to the transition cycle (including transition cycle).
 - *n_p* is the estimated number of chargedepleting phases p.

 $n_p = \operatorname{int}\left(\frac{R_{CDa,p}}{d_p}\right) + 1$

is always a upwards adjusted whole number (integer).


► The upwards adjusted whole number of estimated charge-depleting phases and the inappropriate average M_{CO2,CDavg,p} leads to an inaccuracy that could be improved as it can be seen on the next slide.

WLTP – COMBINED APPROACH FOR OVC-HEV. PHASE SPECIFIC EQUIVALENT ALL ELECTRIC RANGE.

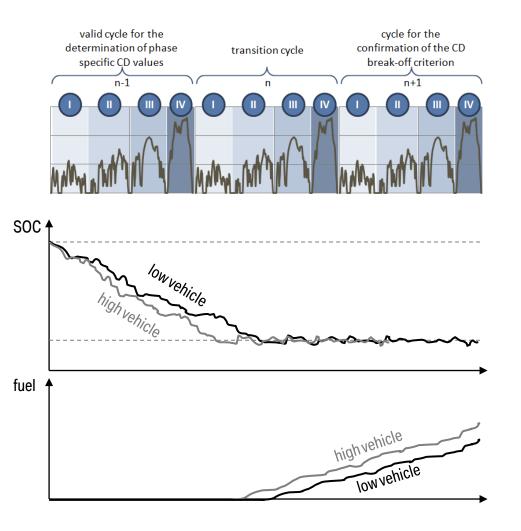
Advantage: Continuous linear line describing the phase specific EAER_p within a family and it is therefore possible to be interpolated for a individual vehicle

WLTP – COMBINED APPROACH FOR OVC-HEV. PHASE SPECIFIC EQUIVALENT ALL ELECTRIC RANGE.

Energy demand_{mid} [Wh]

Recommendation:
Adopt the adjusted EAER calculation equation.
Exclude the transition cycle for M_{CO2,CDavg,p}

$$EAER_{p} = \frac{\left(M_{CO2,CS,p} - M_{CO2,CDavg,p}\right)}{M_{CO2,CS,p}} \cdot R_{CDa,p}$$


WLTP – COMBINED APPROACH FOR OVC-HEV. FURTHER VALIDATION ISSUES OF THE COMBINED APPROACH.

► Validation of the calculation method for the CD-phase specific values R_{CDa}, EAER and EC calculated from the charge-depleting test.

► Validation of the combined approach for the phase specific values R_{CDa}, EC and the ("new") EAER calculated from the charge-depleting test.

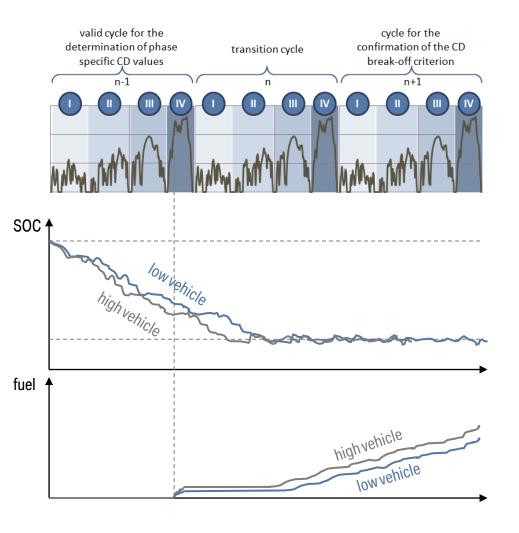
► Validation of a adjusted method that allows the OVC-HEV interpolation family building with different R_{CDC} between vehicle low and high.

WLTP – COMBINED APPROACH FOR OVC-HEV. DIFFERENT CASES WITHIN ONE INTERPOLATION FAMILY.

1st case within a vehicle family

- No ICE-start until SOC_{min} is reached.
- Performance of the electric power train is higher than the power demand of the high vehicle.

WLTP – COMBINED APPROACH FOR OVC-HEV. DIFFERENT CASES WITHIN ONE INTERPOLATION FAMILY.

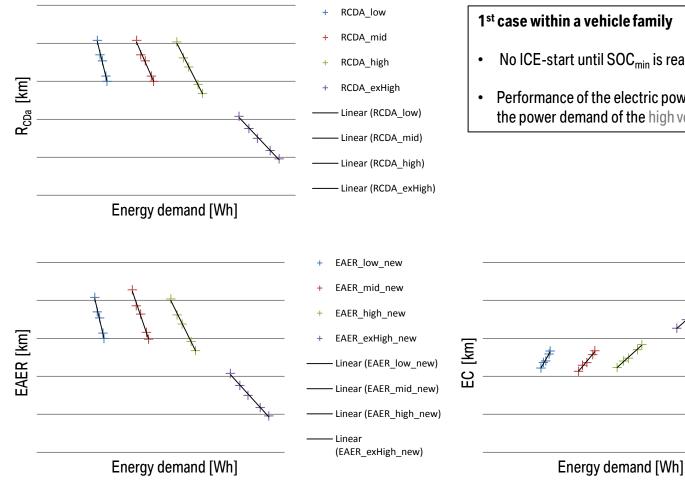

2nd case within a vehicle family low vehicle

- No ICE-start until SOC_{min} is reached.
- Performance of the electric power train is higher than the power demand of the low vehicle.

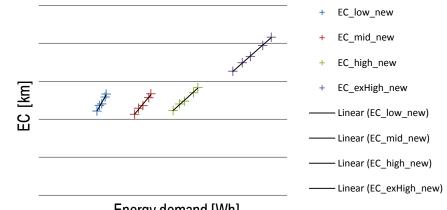
high vehicle

- ICE-start before SOC_{min} is reached.
- The limited power of the electric power train causes ICE start of the high vehicle.

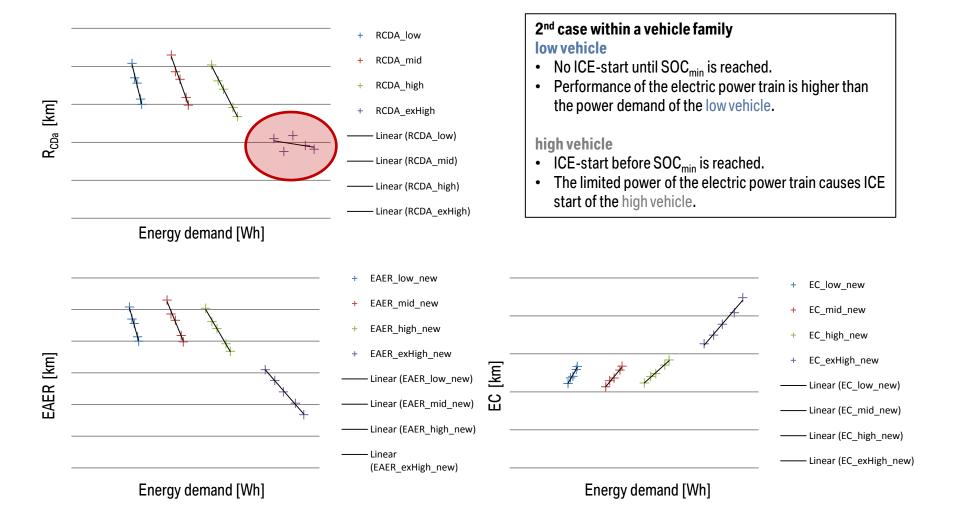
WLTP – COMBINED APPROACH FOR OVC-HEV. DIFFERENT CASES WITHIN ONE INTERPOLATION FAMILY.


3rd case within a vehicle family low vehicle

- ICE-start before SOC_{min} is reached.
- The limited power of the electric power train causes ICE start of the low vehicle.


high vehicle

- ICE-start before SOC_{min} is reached.
- The limited power of the electric power train causes ICE start of the high vehicle.


WLTP – COMBINED APPROACH FOR OVC-HEV. **1ST CASE RESULTS.**

- No ICE-start until SOC_{min} is reached.
- Performance of the electric power train is higher than the power demand of the high vehicle.

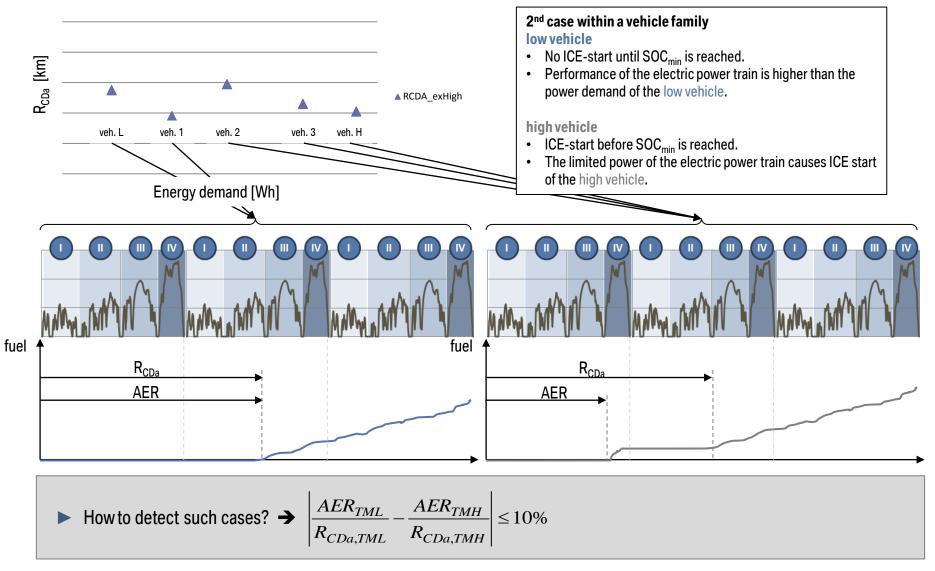
WLTP – COMBINED APPROACH FOR OVC-HEV. 2ND CASE RESULTS.

WLTP – COMBINED APPROACH FOR OVC-HEV. WHY DOES THE INTERPOLATION WORK FOR EAER BUT NOT FOR R_{CDA}?

EAER

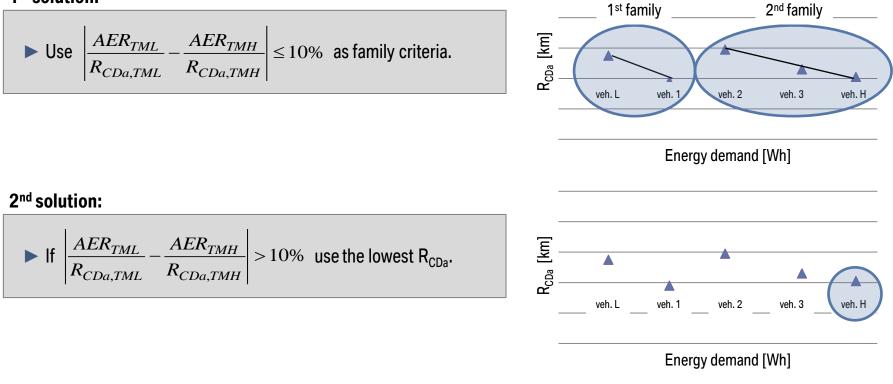
The calculation of EAER takes care about CO_2 mass emission of the charge-depleting test **and** electric energy consumptions. Due to the consideration of both energy sources, potential non-linearity is compensated.

$$EAER_{p} = \frac{\left(M_{CO2,CS,p} - \frac{M_{CO2,CDavg,p}}{M_{CO2,CS,p}}\right)}{M_{CO2,CS,p}} \cdot R_{CDa,p} \Longrightarrow R_{CDa,p} = \frac{E_{AC}}{EC_{AC,p}}$$


$\mathbf{R}_{\mathsf{CDa}}$

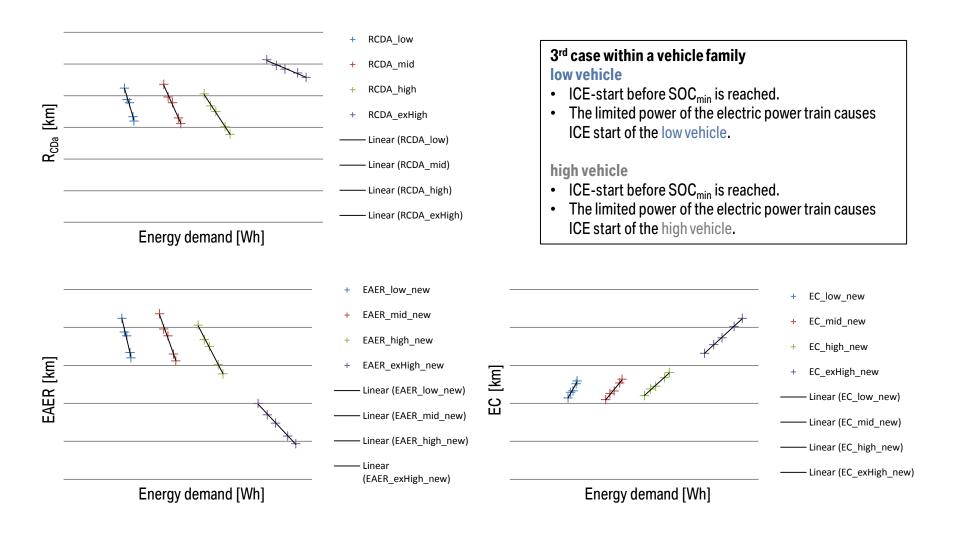
The calculation of R_{CDa} **ignores** the CO₂ mass emission between the 1st cycle and cycle (n-1), what is correct the purpose of the R_{CDa} . But that leads the an higher inaccuracy because the non-linearity is not compensated.

$$R_{CDa,p} = \frac{E_{AC}}{EC_{AC,p}}$$


This problem is **not caused** by the interpolation because R_{CDa} would show the same non-linearity in such special cases if a vehicle family would be measured.

WLTP – COMBINED APPROACH FOR OVC-HEV. 2ND CASE PROBLEM.

WLTP – COMBINED APPROACH FOR OVC-HEV. POTENTIAL 2ND CASE SOLUTIONS.


1st solution:

3rd solution:

Remove the requirement to have phase specific R_{CDa}, because phase specific EAER is enough.

WLTP – COMBINED APPROACH FOR OVC-HEV. 3RD CASE RESULTS.

WLTP – COMBINED APPROACH FOR OVC-HEV. FINAL RECOMMENDATION.

Validation of the calculation method for the CD-phase specific values R_{CDa}, EAER and EC calculated from the charge-depleting test.

Recommendation:
Adopt the adjusted EAER calculation equation.
Exclude the transition cycle for M_{CO2,CDavg,p}

$$EAER_{p} = \frac{\left(M_{CO2,CS,p} - M_{CO2,CDavg,p}\right)}{M_{CO2,CS,p}} \cdot R_{CDa,p}$$

Validation of the combined approach for the phase specific values R_{CDa}, EC and the ("new") EAER calculated from the charge-depleting test.

1st solution:

2nd solution:

$$\blacktriangleright \text{ Use } \left| \frac{AER_{TML}}{R_{CDa,TML}} - \frac{AER_{TMH}}{R_{CDa,TMH}} \right| \le 10\% \text{ as family criteria.} \qquad \blacktriangleright \text{ If } \left| \frac{AER_{TML}}{R_{CDa,TML}} - \frac{AER_{TMH}}{R_{CDa,TMH}} \right| > 10\% \text{ use the lowest } \mathsf{R}_{\mathsf{CDa}}.$$

3rd solution:

Remove the requirement to have phase specific R_{CDa}, because phase specific EAER is enough.

WLTP – COMBINED APPROACH FOR OVC-HEV. FURTHER VALIDATION ISSUES OF THE COMBINED APPROACH.

► Validation of the calculation method for the CD-phase specific values R_{CDa}, EAER and EC calculated from the charge-depleting test.

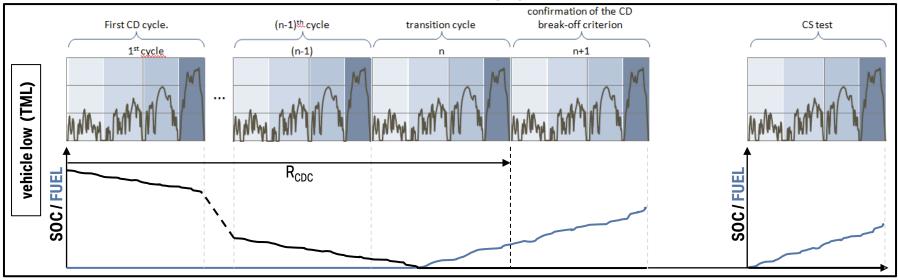
► Validation of the combined approach for the phase specific values R_{CDa}, EC and the ("new") EAER calculated from the charge-depleting test.

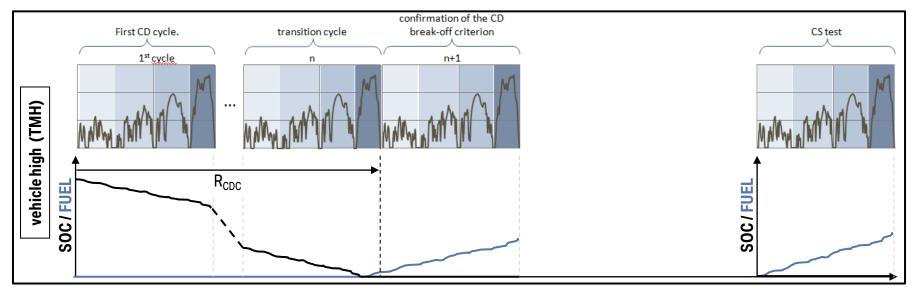
► Validation of a adjusted method that allows the OVC-HEV interpolation family building with different R_{CDC} between vehicle low and high.

WLTP – COMBINED APPROACH FOR OVC-HEV.

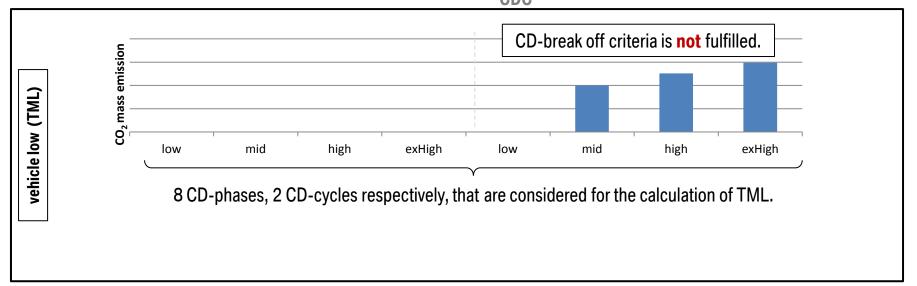
IDEA: ADJUSTMENT OF "SAME RCDC" AS INTERPOLATION FAMILY CRITERION.

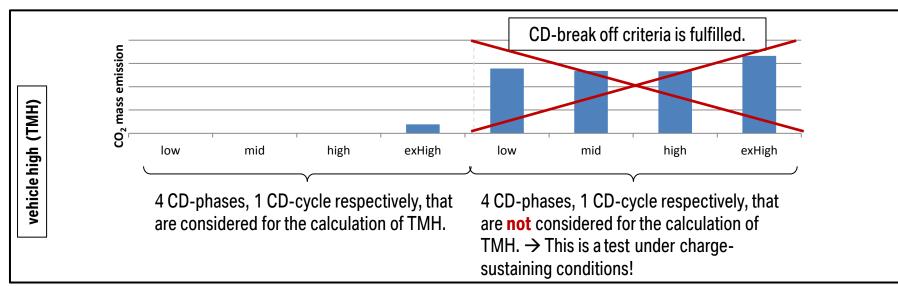
value	interpolation with RCDC family criterion using old calculation	interpolation without RCDC family criterion using the old calculation	interpolation with adjusted RCDC family criterion using a new methodology
M _{CO2,CD}	ОК	NOK	
M _{CO2,CS}	ОК	ОК	
M _{CO2,weighted}	ОК	OK	
FC _{CD}	ОК	NOK	
FC _{CS}	ОК	ОК	
FC weighted	ОК	ОК	
EC _{AC,CD}	ОК	NOK	
EC _{AC} , weighted	ОК	ОК	
EC	ОК	NOK	
E _{AC}	interpolation is not necessary because other family criteria ensure a similar recharged energy (e.g. same storage, converter,)	interpolation is not necessary because other family criteria ensure a similar recharged energy (e.g. same storage, converter,)	
R _{CDC}	ОК	NOK	
AER	NOK, but can be handled with AER-RCDa- ratio criterion	NOK (but can be handled with AER-RCDa- ratio criterion)	
EAER	ОК	ОК	
R _{CDa}	ОК	ОК	

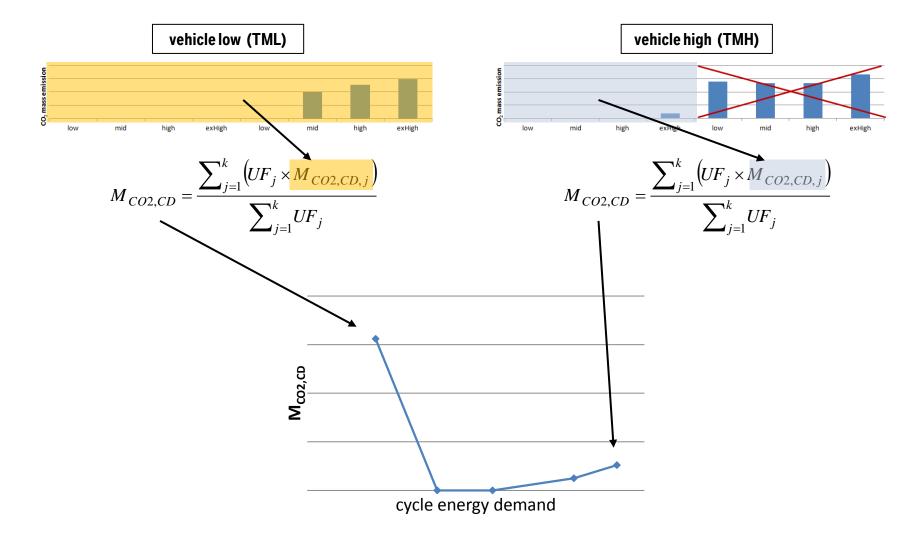

Disadvantage: Manufacturer has to build two OVC-HEV families instead of one family in case of a R_{CDC} switch (e.g. 2 CD cycles for TML and only 1 CD cycle for TMH). Advantage: Better linearity. Advantage: Manufacturer is allowed to build one OVC-HEV family even if there is a R_{CDC} switch.


Advantage: This approach tries to: -combine both advantages and to -avoid both disadvantages.

Disadvantage: Bad linearity for some values (see "NOK").


WLTP – COMBINED APPROACH FOR OVC-HEV.


WHAT IS THE PROBLEM OF A DIFFERENT R_{CDC}?

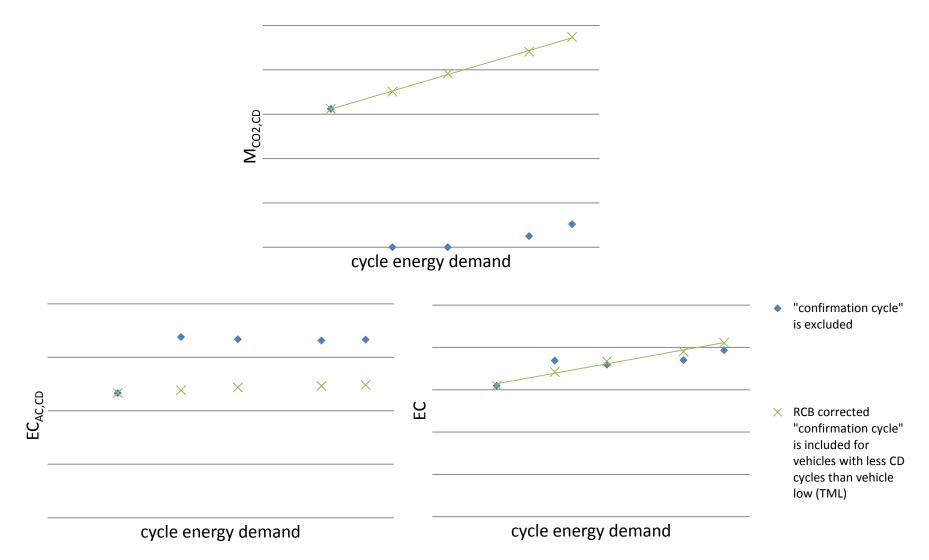


WLTP – COMBINED APPROACH FOR OVC-HEV. WHAT IS THE PROBLEM OF A DIFFERENT R_{CDC}?

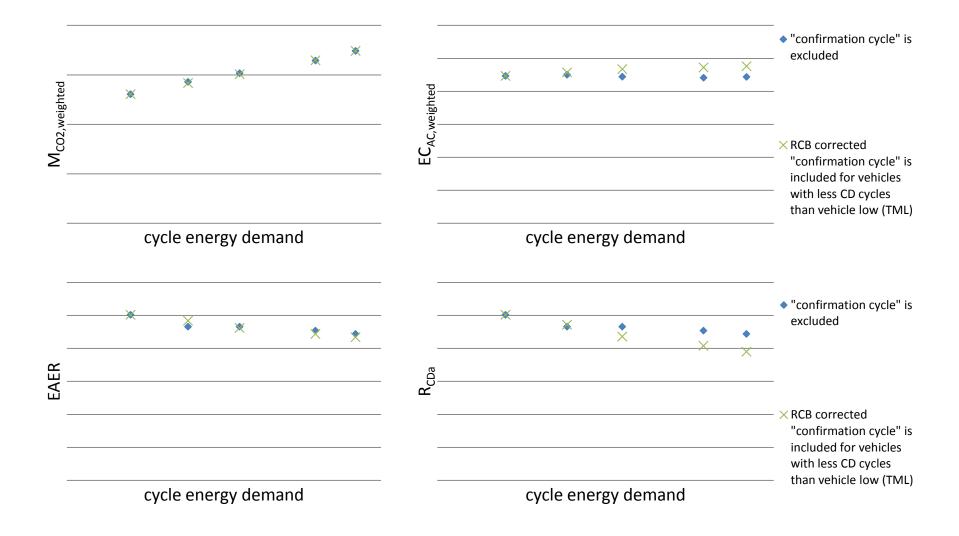
WLTP – COMBINED APPROACH FOR OVC-HEV. EXAMPLE: WHAT IS THE PROBLEM OF A DIFFERENT R_{CDC}?

WLTP – COMBINED APPROACH FOR OVC-HEV. WHAT IS THE PROPOSAL?

Replace the requirement "same RCDC" within one OVC-HEV interpolation family with:


"The difference between the number of charge-depleting cycles shall not exceed the amount of one." $\rightarrow n_{\text{transitioncycle},TML} - n_{\text{transitioncycle},TMH} \leq 1$

In case that the amount of charge-depleting cycles is not the same for vehicle low (TML) and vehicle high (TMH), the "confirmation cycle" for the break-off criterion shall be used for the vehicle with less amount of charge-depleting cycles.


Important:

The "**confirmation cycle**" is a cycle under **charge-sustaining conditions**. In order to avoid biases, it is necessary to apply the RCB-correction to the confirmation cycle by using the correction coefficient!

WLTP – COMBINED APPROACH FOR OVC-HEV. RESULTS (1).

WLTP – COMBINED APPROACH FOR OVC-HEV. RESULTS (2).

WLTP – COMBINED APPROACH FOR OVC-HEV. RESULTS (3).

value	interpolation with RCDC family criterion using old calculation	interpolation without RCDC family criterion using the old calculation	interpolation with adjusted RCDC family criterion using a new methodology
M _{CO2,CD}	OK	NOK	ОК
M _{CO2,CS}	OK	OK	ОК
M _{CO2,weighted}	OK	ОК	ОК
FC _{CD}	OK	NOK	ОК
FC _{CS}	OK	ОК	ОК
FCweighted	OK	ОК	ОК
EC _{AC,CD}	OK	NOK	OK
EC _{AC} , weighted	OK	ОК	OK
EC	OK	NOK	ОК
E _{AC}	interpolation is not necessary because other family criteria ensure a similar recharged energy (e.g. same storage, converter,)	interpolation is not necessary because other family criteria ensure a similar recharged energy (e.g. same storage, converter,)	interpolation is not necessary because other family criteria ensure a similar recharged energy (e.g. same storage, converter,)
R _{CDC}	OK	NOK	ОК
AER	NOK, but can be handled with AER-RCDa- ratio criterion	NOK (but can be handled with AER-RCDa- ratio criterion)	NOK, but can be handled with AER-RCDa- ratio criterion
EAER	ОК	OK	ОК
R _{CDa}	OK	ОК	OK

WLTP – COMBINED APPROACH FOR OVC-HEV. FINAL RECOMMENDATION.

Due to the advantages:

-better linearity and

-the possibility to build one OVC-HEV family even if there is one R_{CDC} switch the proposed and analysed adjusted methodology is recommended.

• Replace the requirement "same RCDC" within one OVC-HEV interpolation family with: $n_{\text{transitioncycle},TML} - n_{\text{transitioncycle},TMH} \leq 1$

"The difference between the number of charge-depleting cycles shall not exceed the amount of one." \rightarrow

► Add the following text to Annex 8:

In case that the amount of charge-depleting cycles is not the same for vehicle low (TML) and vehicle high (TMH), the "confirmation cycle" for the break-off criterion shall be corrected and used for the vehicle with less amount of charge-depleting cycles.