

Ministry of Land, Infrastructure and Transport **KATRI** Korea Automobile Testing & Research Institute

Informal document VIAQ-02-08

Proposal on Substances To Be Measured

Hyunwoo Lee KATRI peterlee@ts2020.kr

Ministry of Land, Infrastructure and Transport KATRI Korea Automobile Testing & Research Institute

What are VOCs?

- What are VOCs? "Volatile organic compound (VOC)" means any organic compound having an initial boiling point less than or equal to 250° C measured at a standard pressure of 101,3 kPa. (Directive 2004/42/CE of the European Parliament and of the Council of 21 April 2004 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain paints and varnishes and vehicle refinishing products
- World Health Organization (WHO) has classified VVOCs, VOCs and SVOCs based on ranges of boiling points

Description	Abbreviation	Boiling Point Range(°C)	Example Compounds
Very volatile (gaseous) organic compounds	VVOC	<0 to 50-100	Propane, butane, methyl chloride
Volatile organic comp ounds	VOC	50-100 to 240-260	Formaldehyde, d-Limonene, toluene, ace tone, ethanol (ethyl alcohol) 2-propanol (i sopropyl alcohol), hexanal
Semi volatile organic compounds	SVOC	240-260 to 380-400	Pesticides (DDT, chlordane, plasticizers (phthalates), fire retardants (PCBs, PBB))

Volatile Organic Compounds

MOLIT

Ministry of Land, Infrastructure and Transport KATRI Korea Automobile Testing & Research Institute

Identification of Volatile Organic Compounds

• Test vehicle cabin air measurement(ISO 12219-1 Ambient mode)

< Chromatogram of VOCs >

Nr	RT	RI	compund	CAS number	µg/m3
1	7.9	490	Aceton	67-64-1	71
2	11.6	598	2-Butanon	78-93-3	25
3	13.1	600	n-Hexan	110-54-3	164
4	13.9	625	Tetrahydrofuran	109-99-9	54
5	14.8	624	Methylcyclopentan	96-37-7	27
6	16.0	661	1-Butanol	71-36-3	41
7	21.9	777	N,N-Dimethylformamid	68-12-2	25
8	23.0	767	Toluol	108-88-3	162
9	24.2	798	Hexanal	66-25-1	22
10	27.0	900	C9-Alkan		42
11	28.0	900	C9-Alken		21
12	28.7	863	Ethylbenzol	100-41-4	49
13	29.2	871	m,p-Xylol	108-38-3 / 106-42-3	67
14	29.6	892	Cyclohexanon	108-94-1	40
15	30.2	891	Styrol	100-42-5	24
16	30.5	894	o-Xylol	95-47-6	29
17	33.9	985	Phenol	108-95-2	21
18	35.0	985	a-Methylstyrol	98-83-9	37
19	35.6	1028	Azoisobuttersäurenitril	78-67-1	45
20	35.8	998	1,2-Propandioldiacetat	623-84-7	33
21	37.0	1028	2-Ethyl-1-hexanol	104-76-7	44
22	37.9	1034	Limonen	138-86-3	31
23	39.3	1200	C12-Alkan		25
24	41.0	1100	n-Undecan	1120-21-4	39
25	43.5	1200	C12-Alkan		22
26	43.8	1200	C12-Alkan		21
27	45.3	1200	n-Dodecan	112-40-3	81
28	49.2	1300	Tridecan	629-50-5	43
29	55.2	1529	2,6-Di-tert-butyl-4-methylphenol	128-37-0	42

Volatile Organic Compounds

MOLIT

Ministry of Land, Infrastructure and Transport **KATRI** Korea Automobile Testing & Research

The detection rates of Volatile Organic Compounds

- We tested 39 vehicles in 2006 for volatile organic compounds.
- This table shows the 24 substances and their detection rates.

No	Substances	Detection rates(%)
1	Toluene	100.0
2	Styrene	100.0
3	o-Xylene	100.0
4	m,p-Xylene	100.0
5	Ethylbenzene	100.0
6	Benzene	100.0
7	1,3,5-Trimethylbenzene	100.0
8	1,2,4-Trimethylbenzene	100.0
9	Trichloroethylene	57.5
10	Chloroform	20.0
11	Chlorobenzene	16.3
12	o-Dichlorobenzene	13.8
13	Carbon tetrachloride	5.0
14	1,1,1-Trichloroethane	5.0
15	m,p-Dichlorobenzene	4.4

Ministry of Land, Infrastructure and Transport KATRI Korea Automobile Testing & Research Institute

Comparison of VIAQ Substances Limits

	Substances		KODEA		JAPAN		OEHHA REL [*] (US CA.GOV)		
CAS NO.	(unit : µg/m³)	IARC	RUREA	CHINA	(JAMA)	WHO	Acute	8-hours	Chronic
50-00-0	Formaldehyde	1	210	100	100	100	55	9	9
71-43-2	Benzene	1	30	110	-	-	27	3	3
75-07-0	Acetaldehyde	2B	-	50	48	50	470	300	140
100-41-4	Ethyl Benzene	2B	1,000	1,500	3,800	-	-	-	2,000
100-42-5	Styrene	2B	220	260	220	260	21,000	-	900
107-08-8	Acrolein	3	50	50	-	-	2.5	0.7	0.35
108-88-3	Toluene	3	1,000	1,100	260	260	37,000	-	300
1330-20-7	Xylene	3	870	1,500	870	-	22,000	-	700
Total		7 types	8 types	9 types*			-		

• JAPAN(JAMA) : Tetra decane 330 µg/m³, Di-n-butyl phthalate 220 µg/m³, Di-2-ethylhexyl phthalate 120 µg/m³

• OEHHA REL : Office of Environmental Health Hazard Assessment, Reference Exposure Levels(OEHHA.ca.gov)

International Agency for Research on Gancer

<u>Transport</u>

KATRI Korea Automobile Testing & Research Institute

Agents Classified by the IARC Monographs

Group 1	Carcinogenic to humans	117 agents
• Group 2A	Probably carcinogenic to humans	74
• Group 2B	Possibly carcinogenic to humans	287
• Group 3	Not classifiable as to its carcinogenicity to humans	503
Group 4	Probably not carcinogenic to humans	1

CAS No.	Agent	Group [*]	Volume	Year	Additional information
50-00-0	Formaldehyde	1	Sup 7, 62, 88, 100F	2012	
71-43-2	Benzene	1	29, Sup 7. 100F	2012	
75-07-0	Acetaldehyde	2B	36, Sup 7, 71	1999	
100-41-4	Ethylbenzene	2B	77	2000	
100-42-5	Styrene	2B	60, 82	2002	
107-02-8	Acrolein	3	63, Sup 7	1995	
108-88-3	Toluene	3	47, 71	1999	
1330-20-7	Xylenes	3	47, 71	1999	

KATRI Korea Automobile Testing & Research

Formaldehyde

OEHHA Toxicity Criteria Database

CAS Number: 50-00-0

Use(s): Disinfectant (antibacterial, fungicide), tissue fixative, photography (color negative stabilizer), textile treatment; precursor to polyfunctional alcohols; production of urea and melamine resins, phenolic resin, plastics, adhesives, preservatives, pressed wood products, automobile components; byproduct of combustion, component of tobacco smoke

Acute REL (µg/m3):	55
Species:	Human
Toxicologic Endpoint:	Eye irritation
Target Organs:	Eyes
Severity:	Mild
Chronic Inhalation REL (µg/m3):	9
Target Organs:	Respiratory system

KATRI Korea Automobile Testing & Research

Benzene

OEHHA Toxicity Criteria Database

CAS Number: 71-43-2

Use(s): Additive in gasoline, solvent, oil extraction, photogravure printing, veterinary medicine (disinfectant); production of detergents, explosives, pharmaceuticals, and dyestuffs; chemical intermediate in production of ethylbenzene (styrene), cumene, cyclohexane; component of combustion emissions and tobacco smoke

Acute REL (µg/m3):	27
Species:	Mouse
Toxicologic Endpoint:	Reproductive/ development; aplastic anemia and acute myelogenous leukemia
Target Organs:	Reproductive/ development, immune system, hematologic system
Severity:	Severe
Chronic Inhalation REL (µg/m3):	3
Target Organs:	Hematologic system, nervous system, development

Ministry of Land, Kor Infrastructure and Tes

KATRI Korea Automobile Testing & Research Institute

Acetaldehyde

OEHHA Toxicity Criteria Database

CAS Number:75-07-0Use(s):Chemical intermediate in production of perfumes, resins, and dyes; fruit and fishpreservative, flavoring agent, denaturant for alcohol; solvent; component of tobacco smoke

470
Human
Respiratory and eye irritation
Respiratory system; eyes
300
140
Respiratory system

Ministry of Land, Infrastructure and Transport KATRI Korea Automobile Testing & Research

Ethylbenzene

OEHHA Toxicity Criteria Database

CAS Number: 100-41-4

Use(s): Styrene, synthetic rubber, airplane fuel; component of tobacco smoke

Chronic Inhalation REL (µg/m3):

Target Organs:

2,000

Development; alimentary system (liver); kidney; endocrine

system

Ministry of Land, Infrastructure and Transport **KATRI** Korea Automobile Testing & Research

Styrene

OEHHA Toxicity Criteria Database

CAS Number: 100-42-5

Use(s): Precursor to polystyrene and several copolymers; production of plastic, synthetic rubber, insulation and protective coatings, construction materials, vehicle components, food containers; flavoring agent; component of automobile and tobacco smoke

Acute REL (µg/m3):	21,000
Species:	Human
Toxicologic Endpoint:	Respiratory and eye irritation
Target Organs:	Respiratory system; eyes
Severity:	Mild
Chronic Inhalation REL (µg/m3):	900
Target Organs:	Nervous system

KATRI Korea Automobile Testing & Research

Acrolein

OEHHA Toxicity Criteria Database

CAS Number:107-02-8Use(s):Biocide: aquatic herbicide, fumigant, microbiocide, molluscide (considered an
alternative to methyl bromide); preparation of biological specimens; component of tobacco smoke

Acute REL (µg/m3):	2.5
Species:	Human
Toxicologic Endpoint:	Respiratory and eye irritation
Target Organs:	Respiratory system; eyes
Severity:	Mild
8-Hour Inhalation REL (μg/m3):	0.7
Chronic Inhalation REL (µg/m3):	0.35
Target Organs:	Respiratory system

Infrastructure and

KATRI

Korea Automobile Testing & Research Institute

♦ Toluene

OEHHA Toxicity Criteria Database

CAS Number:108-88-3Use(s):Solvent, jet fuel component and gasoline additive, cement for polystyrene kits;production of polymers; chemical intermediate (benzene dealkylation); component of car exhaust and tobaccosmoke

Acute REL (µg/m3):	37,000
Species:	Human
Toxicologic Endpoint:	Reproductive/ development; headache, dizziness, sensory irritation
Target Organs:	Reproductive/development, nervous systems, respiratory system, eyes
Severity:	Severe
Chronic Inhalation REL (µg/m3):	300
Target Organs:	Nervous system, respiratory system, development

KATRI Korea Automobile Testing & Research

Xylenes

OEHHA Toxicity Criteria Database

CAS Number:1330-20-7Use(s):Solvent for paints, varnishes, inks, dyes, adhesives, pharmaceuticals, detergents, andrubber; production of polymer fiber (mylar and dacron); component of gasoline and fuel oils; component oftobacco smoke (m-,p-)

Acute REL (µg/m3):	22,000
Species:	Human
Toxicologic Endpoint:	Central nervous system impairment, respiratory and eye irritation
Target Organs:	Nervous systems, respiratory system, eyes
Severity:	Mild
Chronic Inhalation REL (µg/m3):	700
Target Organs:	Nervous system, respiratory system, eyes

KATRI Korea Automobile Testing & Research

Institute

Proposal : 8 substances

Formaldehyde (50-00-0), Benzene (71-43-2), Acetaldehyde (75-07-0), Ethylbenzene (100-41-4), Styrene (100-42-5), Acrolein (107-02-8), Toluene (108-88-3), Xylenes (1330-20-7)

- Rationale :
- There are many relevant substances with regard to Interior air quality and we can not cover all of the substances (e.g. VOCs, harmful substances)
- Harmonized test procedures for the measurement of interior VOCs taking into account existing standards, the 8 substances of VOCs emitted by interior materials used in the construction of vehicles will be considered to harmonize the test procedures.