Regulation No. XXX

UNIFORM PROVISIONS CONCERNING THE APPROVAL OF
I EMERGENCY CALL DEVICES (AECD)
II VEHICLES WITH REGARD TO THE INSTALLATION OF AN
 AECD OF AN APPROVED TYPE
III VEHICLES WITH REGARD TO THEIR AECS

Contents

Preliminary comments from the Secretary of GRSG informal group on AECS

1. This document was produced by the informal group Secretary as a working document, for
 serving as a basis for discussions within the GRSG informal group on AECS. It is
 expected to evolve and improve along the discussions that will take place during the
 meetings of the informal group.

2. This document is an attempt to show the status of the discussions after the 9th meeting of
 the informal group. The changes compared to AECS-02-02-Rev.4 (status after 8th
 meeting) are indicated in bold and strikethrough characters, save for Part III for ease of
 reading and because it was not discussed at AECS-09.

3. Basis of the document is AECS-02-02-r4 (Secretary), AECS-09-02 (OICA, on behalf of
 preparatory task-force), AECS-09-03 (J),AECS-09-07 (GSA) and AECS-09-05 (RUS –
 European Commission)

4. Annexes 9 (Test method for emergency call) and Annex 10 (functional check of AECD)
 reflect the proposals from Industry per the document AECS-09-02. These proposals were
 not accepted as such by AECS-09, the group did not reach any common understanding of
 the adequate provision for these items.

5. Some editorial or secondary amendments are indicated (annexes 1 to 5, annex 8) while
 they were not discussed in the meeting. Annex 8 is also adapted according to the revision
 proposed by GSA per document AECS-09-07.
1. Scope

1.1 This Regulation applies to:

(a) Part I: the approval of Accident Emergency Call Devices which are intended to be fitted to vehicles of categories M1 and N1;

(b) Part II: the approval of vehicles of categories M1 and N1 with regard to the installation of an Accident Emergency Call Device which has been approved to Part I of this regulation.

(c) Part III: the approval of vehicles of categories M1 and N1 with regard to their Accident Emergency Call System or with regard to the installation of an Accident Emergency Call Device which has not been separately approved according to Part I of this Regulation.

1.2 It does not apply to:

(a) Communication module functionality and communication antenna functionality, unless otherwise prescribed in this Regulation;

(b) The data additional to MSD to be convened to PSAP, the format of the data, the mechanism and logic of data transmission, data exchange protocol, operation modes and conditions of transitions between such modes, performance of the test call and test data transfer, response to protocol commands received from infrastructure and network registration logic;

(c) Privacy, data protection and personal data processing.

1.3 Vehicles

- in the scope of neither Regulation No. 94 nor Regulation No. 95 and not fitted with an automatic triggering system,

- of category M1 in the scope of Regulation No.94 and not equipped with frontal airbag

- of category N1 in the scope of Regulation No.95 and not equipped with side airbag, or

shall be excluded from the scope of this regulation.

1.4 GNSS positioning may be approved at the request of the applicant.

However, if the applicant opts to request approval of AECD/AECS without the GNSS positioning as described in this regulation, national requirements of the Contracting Parties apply.

1.5 Vehicles of the following categories shall be excluded from the scope of this regulation:

- Armoured vehicles.

- M1 vehicles with a total permissible mass above 3.5t

2. Definitions - general

For the purposes of this Regulation:

2.1 “Communication module” means a component of an AECD designed for voice communication and to transmit data about an accident using terrestrial mobile telephone communications networks;

2.2 “Human/Machine interface (HMI)” means a component or function of an AECD designed to allow the user to interact with the device, including by receiving visual information, obtaining visual information and introducing control commands;

2.3 “Data exchange protocol” means the set of rules and agreements that define the content, format, time parameters, sequence and error checks in messages exchanged between an AECD and the devices of Public Service Answering Party (PSAP).

2.4 “Public/Private Safety Answering Point (PSAP)” means a physical location where emergency calls are first received under the responsibility of a public authority or a private organization recognized by the national government / responsible authorities.

2.5 “Power supply” means back-up battery when fitted, or in its absence, any power source feeding the AECD after the sled-test defined in Annex 7.

2.6 "Airbag" means a device which, in the event of a severe impact affecting the vehicle, automatically deploys a flexible structure intended to limit the gravity of the contacts of one or more parts of the body of an occupant of the vehicle with the interior of the passenger compartment.

2.7 “Satellite-Based Augmentation System” (SBAS) is a system ensuring the correction of local errors of GNSS systems due to interferences via a network of ground-based stations. (ex: EGNOS, WASS, QZSS).

Part I: APPROVAL OF ACCIDENT EMERGENCY CALL DEVICES (AECD) WHICH ARE INTENDED TO BE FITTED TO VEHICLES OF CATEGORIES M1 AND N1

3. Definitions

For the purpose of Part I of this regulation,

3.1 “AECD (Accident Emergency Call Device)” means a unit or a set of units performing at least the following functions;
- receiving and/or generating the automatic and manual triggering signals,
- receiving or determining the vehicle location,
- providing a warning signal
- sending the data, and
- allowing bidirectional audio signals for voice communication

3.2 “Global Navigation Satellite System receiver” (“GNSS receiver”) means a component of an AECD/AECS designed to determine the vehicle positioning information using signals from global navigation satellite systems; the GNSS receiver can be included in the AECD or in another external control unit, as long as the AECD ensure its ability to provide the vehicle positioning information in case of an event.

3.3 “Satellite-Based Augmentation System” (SBAS) is a system ensuring the correction of local errors of GNSS systems due to interferences via a network of ground-based stations. (ex: EGNOS, WASS, QZSS)
3.4 “Control module” means a component of an AECD designed to ensure the combined functioning of all components of the AECD;

3.5 “Type of AECD” means devices that do not differ in such essential respects as:
(a) The manufacturer's trade name or mark;
(b) Their construction;
(c) Dimensions, structure and materials of the attachments and supports.

3.6 “AECD information signal device” means a device that provides information on the status of the emergency call transaction.

3.7 “AECD warning signal device” means a tell-tale that provides a failure indication of the AECD.

4. Application for approval of an AECD

4.1 The application for approval of a type of AECD shall be submitted by the holder of the trade name or mark or by his duly accredited representative.

4.2 A model of the information document is given in Annex 4.

4.3 For each type of AECD, the application shall be accompanied by samples of complete sets of AECDs in sufficient quantities for the tests prescribed by this regulation. Additional specimens may be called for at the request of the technical service responsible for conducting the test.

5. Markings of an AECD

5.1 The samples of AECD submitted for approval shall bear the trade name or mark of the manufacturer. This marking shall figure at least on the unit or units containing the navigation system receiver and communication module. It shall be clearly legible and be indelible.

5.2 The unit or units containing the navigation system receiver and communication module shall possess a space large enough to accommodate the approval mark. This space shall be shown on the drawings referred to in Annex 4.

6. Approval

6.1 If the samples submitted for approval meet the requirements of paragraph 7 of this Regulation, approval of the pertinent type of AECD shall be granted.

6.2 An approval number shall be assigned to each type approved. The first two digits (at present 00) shall indicate the series of amendments incorporating the most recent major technical amendments made to the Regulation at the time of issue of the approval. The same Contracting Party shall not assign the same number to another type of AECD.

6.3 Notice of approval or of refusal, or of extension or withdrawal of approval, or of production definitively discontinued of a type of AECD pursuant to this Regulation shall be communicated to the Parties to the Agreement which apply this Regulation by means of a form conforming to the model in annex 1 to this Regulation.

6.4 There shall be affixed, conspicuously and in the space referred to in paragraph 5.2 above, to every AECD conforming to a type approved under this Regulation, in addition to the mark prescribed in paragraph 5.1, an international approval mark conforming to the model given in annex 1, consisting of:
6.4.1 A circle surrounding the letter “E” followed by the distinguishing number of the country which has granted approval;

6.4.2 The number of this Regulation, followed by the letter “R”, a dash and the approval number to the right of the circle prescribed in paragraph 6.4.1.

6.5 The approval mark shall be clearly legible and be indelible.

7. General requirements

Upon reception of a triggering signal, the AECD shall send data and establish voice connection with the PSAP.

If the sending of data failed then the AECD shall retry sending the data.

If the AECD has successfully sent the data and then loses the voice connection, it shall try to re-establish voice connection.

In case it was not possible to establish voice connection and/or send data using mobile communication networks, the AECD shall store the data in non-volatile memory and attempt re-transmission of the data and to establish a voice connection.

7.1 The effectiveness of AECD shall not be adversely affected by magnetic or electrical fields. This requirement shall be met by ensuring compliance with Regulation No. 10.05. This shall be demonstrated by compliance with the technical requirements and transitional provisions of Regulation No. 10.04 series of amendments or any later series of amendments.

7.2 Position determination

If the AECD is fitted, in accordance with paragraph 1.4., with GNSS receiver supporting at least three GNSS including GLONASS, Galileo and GPS, and is capable of reception and processing of SBAS signals, then the AECD shall comply with the requirements of paragraphs 7.2.1 to 7.2.10.

AECO compliance with respect to positioning capabilities shall be demonstrated by performing test methods described in Annex 8: Test methods for the navigation module.

7.2.1 The GNSS receiver shall be able to output the navigation solution in a NMEA-0183 protocol format (RMC, GGA, VTG, GSA and GSV message). The AECD setup for NMEA-0183 messages output to external devices shall be described in the operation manual.

7.2.2 The GNSS receiver being a part of the AECD shall be capable of receiving and processing individual GNSS signals in L1/E1 band from at least three global navigation satellite systems, including GLONASS, GALILEO and GPS.

7.2.3 The GNSS receiver being a part of the AECD shall be capable of receiving and processing combined GNSS signals in L1/E1 band from at least three global navigation satellite systems, including GLONASS, GALILEO, GPS and SBAS.

7.2.4 The GNSS receiver being a part of the AECD shall be able to provide positioning information in WGS-84 and PZ-90 coordinate systems.

7.2.1 Horizontal position error under open sky conditions and speed up to [140] km/h shall not exceed 15 m for 95% of the measurements done.

7.2.2 Horizontal position error in urban canyon conditions and speed up to [140] km/h shall not exceed 40 m for 95% of the measurements done.
7.2.5 Horizontal position error shall not exceed:
- under open sky conditions: 15 m at confidence level 0.95 with Position Dilution of Precision (PDOP) not less than 2.5;
- in urban canyon conditions: 40 m at confidence level 0.95 with Position Dilution of Precision (PDOP) not less than 4.

7.2.6 The specified requirements for accuracy shall be provided:
- at speed range from 0 to 140 km/h;
- linear acceleration range from 0 to 2 G.

7.2.7 Sensitivity at receiver input shall be:
- acquisition — at least minus 144 dBm
- tracking — at least minus 155 dBm
- reacquisition — at least minus 150 dBm
- GNSS signals detection (cold start) do not exceed 3600 s at signal level on the antenna input of the AECD of minus 144 dBm;
- GNSS signals tracking and navigation solution calculation is available for at least 600 sec at signal level on the antenna input of the AECD of minus 155 dBm;
- Re-acquisition of GNSS signals and calculation of the navigation solution is possible and does not exceed 20 s at signal level on the antenna input of the AECD of minus 150 dBm.

7.2.8 Cold start time to first fix shall not exceed
- 60 s for signal level down to minus 130 dBm
- 300 s for signal level down to minus 140 dBm

7.2.9 GNSS signal re-acquisition time after block out of 60 s at signal level down to minus 130 dBm shall not exceed 20 s after recovery of the navigation satellite visibility.

7.2.10 The testing procedures in Annex 8 can be performed either on the AECD unit including post processing ability or directly on the GNSS receiver being a part of the AECD.

7.3 Mean of access to mobile networks

The AECD shall be fitted with an embedded hardware allowing

7.4 AECD information and warning signal

If the applicant for approval so requests, the AECD information and warning signals verification may be part of the approval of a type of AECD. In this case the following provisions shall apply.

7.4.1 Information shall be provided regarding the status of the emergency call transaction when the AECD is automatically or manually activated.

7.4.2 A warning signal shall be provided in case of AECD internal malfunction. Visual indication of the AECD malfunction shall be displayed while the failure is present. It may be cancelled temporarily, but shall be repeated whenever the ignition or the vehicle master control switch is being activated (whatever applicable).

7.4.2.1 The manufacturer shall provide a statement which explains malfunction indication strategy of the AECS system.

The manufacturer shall provide the type-approval authority with an explanation and technical documentation which shows, in overall terms,
how this is achieved. This documentation shall be maintained by the manufacturer and shall be made open for inspection by the technical service at the time of the type approval.

7.4.3.6.5.4 Instead of providing information or warning signal, the AECD may provide the electric signal to other vehicle components, e.g. instrument panel, which enable to provide information or warning signal.

7.5 6.6. Power supply

If the AECD is fitted with built-in power supply, it shall be able to operate autonomously for a period of first not less than 5 minutes in voice communication mode followed by 60 minutes in call-back mode (idle mode, registered in a the network) and finally not less than 5 minutes in voice communication mode.

This capability shall be tested after performing the AECD sled test in accordance with Annex 7 in the following conditions:
- Built-in AECD battery has to be fully charged at the time the test begins, at the discretion of the applicant;
- Ambient air temperature: (25 ± 10)ºC
- Average network signal strength

If the AECD is not fitted with built-in power supply, then the AECS power supply assessment is performed as described in paragraph 16.6. 47.6. of Part II of this Regulation.

7.6. Resistance to impact

The AECD shall remain operational after impact. This shall be demonstrated according to Annex 7 and Annex 9, paragraphs 1 (MSD emission), and paragraph 2 (MSD emission assessment) and paragraph 5.2 (status indication).

7.6.1. The following AECD components shall be tested to Annex 7:
- Control module,
- Communication module excluding microphones and loudspeakers,
- Back-up battery (if fitted) Power supply
- Connectors
- Network access antenna,

7.6.2. If the applicant for approval so requests, the following AECD components may be tested to Annex 7:
- AECD warning signal device,
- Hands-free audio equipment (microphones and loudspeakers),
- AECD information signal device
- GNSS antenna and
- GNSS receiver

8. Modification and extension of approval of the type of AECD

8.1 Every modification of the AECD type shall be notified to the administrative department which approved the AECD type. The department may then either:

8.1.1 Consider that the modifications made are unlikely to have an appreciable adverse effect, and that in any case the vehicle still complies with the requirements; or

8.1.2 Require a further test report from the technical service responsible for conducting the tests.
8.2 Notice of the confirmation of approval, specifying the alterations made, or refusal shall be communicated to the Parties to the Agreement applying this Regulation by means of a form conforming to the model in annex 1 to this Regulation.

8.3 The competent authority issuing the extension of approval shall assign a series number to each communication form drawn up for such extension.

9. Conformity of production

9.1 The conformity of production procedure shall comply with the requirements set out in the Agreement, Appendix 2 (E/ECE/324 E/ECE/TRANS/505/Rev.2).

9.2 Every AECD approved under this Regulation shall be so manufactured as to conform to the type approved by meeting the requirements set out in paragraph 7 above.

10. Penalties for non-conformity of production

10.1 The approval granted in respect of an AECD type pursuant to this Regulation may be withdrawn if the requirement laid down in paragraph 9.1 above is not complied with or if the AECD fails to pass the checks prescribed in paragraph 9.2 above.

10.2 If a Party to the Agreement which applies this Regulation withdraws an approval it has previously granted, it shall forthwith so notify the other Contracting Parties applying this Regulation by means of a copy of the approval form bearing at the end, in large letters, the signed and dated annotation “APPROVAL WITHDRAWN”.

11. Production definitively discontinued

If the holder of the approval completely ceases to manufacture a vehicle type approved in accordance with this Regulation, he shall so inform the authority which granted the approval. Upon receiving the relevant communication, that authority shall inform thereof the other Parties to the Agreement which apply this Regulation by means of a copy of the approval form bearing at the end, in large letters, the signed and dated annotation “PRODUCTION DISCONTINUED”.

12. Names and addresses of technical services responsible for conducting approval tests, and of administrative departments

The Parties to the Agreement which apply this Regulation shall communicate to the United Nations Secretariat the names and addresses of the technical services responsible for conducting approval tests and of the administrative departments which grant approval and to which forms certifying approval or refusal, or extension or withdrawal of approval, issued in other countries, are to be sent.

Part II APPROVAL OF VEHICLES WITH REGARD TO THE INSTALLATION OF AN AECD OF AN APPROVED TYPE

13. Definitions

For the purposes of Part II of this Regulation:
13.1 “Type of vehicle” with regard to its AECD means vehicles that do not differ in such essential respects as:
(a) Their manufacturer;
(b) The type of their AECD, or
(c) Vehicle features which significantly influence the performances of the AECD

13.2 “Safe Zone” means the zone limited by the safe zone borders and in which a fixed AECD is assumed to be safe from impact deterioration, excluding the glazing.

13.3 “Safe Zone borders” means the limits of the safe zone and are defined by
- In X direction: Between two z-y planes coinciding with front axle and rear axle
- In Y direction: Between the two z-x planes crossing the outer surface of the driver’s seat and crossing the outer surface of the outermost front passenger’s seat.

13.4 “Total permissible mass” means the vehicle technically permissible maximum mass stated by the manufacturer.

13.5 “R point” means a reference point defined for each seat by the manufacturer in relation to the vehicle’s structure, as indicated in Annex 6 to Regulation No.94

13.6 “Triggering signal” means a logic signal that requests MSD transmission.

13.7 “MSD” means a set of data as defined in Annex 11

13.8 “AECS” (Accident Emergency Call System) means an AECD when installed in a vehicle.

13.9 “Multi-task display” means a display on which more than one message can be shown simultaneously.

13.10 “AECS information signal device” means a device that provides information on the status of the emergency call transaction.

13.11 “AECS warning signal device” means a tell-tale that provides a failure indication of the AECD.

14. Application for approval of a vehicle type equipped with an AECD which has been approved to Part I of this regulation

14.1 The application for approval of a vehicle type equipped with an AECD shall be submitted by the holder of the trade name or mark or by his duly accredited representative.

14.2 A model of the information document is given in Annex 2.

14.3 For each vehicle type equipped with an AECD, the application shall be accompanied by samples of complete sets of vehicles in sufficient quantities for the tests prescribed by this regulation. Additional specimens may be called for at the request of the technical service responsible for conducting the test.
15. Approval

15.1 If the vehicle type submitted for approval pursuant to this Regulation meets the requirements of paragraph 15. below, approval of that vehicle type shall be granted.

Before granting approval for a vehicle type with regard to the installation of an AECD approved to Part I of this Regulation, the competent authority shall ensure that the verifications not being part of the Part I approval are included in the Part II approval.

Approval for a vehicle type with regard to the installation of an AECD shall be granted according to one of the approval procedures I and II described in Table 1.

Approval to a vehicle type with regard to the installation of an AECD may be granted also according to approval procedure III described in Table 1.

<table>
<thead>
<tr>
<th>Approval procedure</th>
<th>HMI</th>
<th>GNSS functionality</th>
<th>Resistance to impact</th>
<th>Triggering signal emission</th>
<th>AECS functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure I</td>
<td></td>
<td>Paragraph 17.2.1.</td>
<td>Paragraph 17.3.1.</td>
<td>Paragraph 17.4.1.</td>
<td></td>
</tr>
<tr>
<td>Procedure II</td>
<td></td>
<td>Paragraph 17.2.2.</td>
<td>Paragraph 17.3.2.</td>
<td>Paragraph 17.4.2.</td>
<td></td>
</tr>
<tr>
<td>Procedure III²</td>
<td></td>
<td>Paragraph 17.2.3.</td>
<td>Paragraph 17.5.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Approval procedure</th>
<th>General</th>
<th>HMI</th>
<th>Resistance to impact & Triggering signal emission</th>
<th>AECS functionality</th>
<th>HF Audio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure II (former III)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: approval procedures

15.2 An approval number shall be assigned to each type approved. The first two digits (at present 00) shall indicate the series of amendments incorporating the most recent major technical amendments made to the Regulation at the time of issue

² Procedure II shall only apply to:
- the extension of type approvals to this Regulation, or
- vehicles already approved to Regulations Nos.94 or 95 prior the entry into force of this regulation
of the approval. The same Contracting Party shall not assign the same number to another type of vehicle.

15.3 Notice of approval or of refusal, or of extension or withdrawal of approval, or of production definitively discontinued of a type of vehicle pursuant to this Regulation shall be communicated to the Parties to the Agreement which apply this Regulation by means of a form conforming to the model in annex 3 to this Regulation.

15.4 There shall be affixed, conspicuously and in a readily accessible place specified on the approval form, to every vehicle conforming to a vehicle type approved under this Regulation an international approval mark conforming to the model given in annex 5, consisting of:

15.4.1 A circle surrounding the letter “E” followed by the distinguishing number of the country which has granted approval;

15.4.2 The number of this Regulation, followed by the letter “R”, a dash and the approval number to the right of the circle prescribed in paragraph 15.4.1.

15.5 The approval mark shall be clearly legible and be indelible.

16. Requirements

16.1 General

16.1.1. The AECD installed in the vehicle shall be of a type approved under Part I of this Regulation.

16.1.2. The AECD shall be connected to the vehicle’s on-board electrical network, so that the AECD functions in all the required modes, and the backup battery (if fitted) is charged.

16.1.3. The installation of the AECD shall be such to obtain reception of the GNSS signal and access to a mobile telephone communication network. The applicant shall provide the relevant information with regard to the mobile network and GNSS to which the AECS is intended.

16.1.4 The AECS shall, upon receiving a trigger signal during the vehicle impact test described in this paragraph, ensure the AECS functionality described in paragraph 17.5 (verification of AECS functionality)

16.1.5 Vehicles of category M1 shall be subject to the following:

16.1.5.1. Vehicles of category M1 with a total permissible mass less or equal to 2,5 tons and R-point height at or below 700 mm:

16.1.5.1.1. paragraphs 17.3.1, 17.4.1 and 17.3.2, 17.4.2, or paragraph 17.3.3, 17.4.3

16.1.5.1.2. paragraphs 17.3.1 and 17.3.2, or paragraph 17.3.3

16.1.5.1.3. paragraph 16.X.X. 17.2.

16.1.5.2. Vehicles of category M1 with a total permissible mass less or equal to 2,5 tons and R-point height above 700 mm:

16.1.5.2.1. paragraphs 17.3.1, 17.4.1 and 17.3.2, 17.4.2, or frontal impact provisions of paragraph 17.3.3, 17.4.3

16.1.5.2.2. paragraph 17.3.1 or frontal impact provisions of paragraph 17.3.3

16.1.5.3. paragraph 16.X.X. 17.2.

16.1.5.3. Vehicles of category M1 with a total permissible mass above 2,5 tons and R-point height less or equal to 700 mm:

16.1.5.3.1. paragraph 17.3.2, 17.4.2 or side impact provisions of paragraph 17.3.3, 17.4.3
16.1.4.3.2. paragraph 17.3.2 or side impact provisions of paragraph 17.3.3

16.1.5.3.3. paragraph 16.X.X. 17.2.

16.1.5.4. Vehicles of category M1 with a total permissible laden mass above 2,5 tons and R-point height above 700 mm: paragraphs 17.4. 17.4.4 and 17.2

16.1.6. Vehicles of category N1 shall be subject to the following:

16.1.6.1. Vehicles of category N1 with a R-point height at or below 700 mm:

16.1.6.1.1. paragraph 17.3.2 17.4.2 or side impact provisions of paragraph 17.3.3 17.4.3

16.1.6.1.2. paragraph 17.3.2 or side impact provisions of paragraph 17.3.3

16.1.6.1.3. paragraph 16.X.X. 17.2

16.1.6.2. Vehicles of category N1 with a R-point height above 700 mm: paragraphs 17.4. 17.4.4

17.1.7. A summary of the tests to be performed in function of the vehicle categories can be found in Annex 13

16.1.6 Regardless of paragraph 16.1.5, vehicles that meet the technical requirements of Regulation No 95 without a side airbag are not subject to paragraphs 17.3.2, 17.3.3, 17.4.2 or paragraph 17.4.3.

16.2. Position determination

If the AECS is fitted, in accordance with paragraph 1.4. and not yet verified according to Part I of this Regulation, with GNSS receiver supporting at least three GNSS including GLONASS, Galileo and GPS, and is capable of reception and processing of SBAS signals, then the AECS shall comply with the requirements of paragraphs 17.2.1 to 17.2.10.

AECS compliance with respect to positioning capabilities shall be demonstrated by performing test methods described in Annex 8: Test methods for the navigation module.

16.3. AECS control

When the vehicle is fitted with an AECS control per paragraph 17.1., the AECS control shall fulfill the requirements of paragraphs 16.2.1 to 16.2.3.

16.3.1. The AECS control shall be installed such to comply with the relevant requirements and transitional provisions of Regulation No.121, 01 series of amendments or any later series of amendments.

16.3.2. The AECS control shall be designed and/or placed in such a way that the risk of an inadvertent activation is reduced.

16.3.3. If the AECS control is embedded into a multi-task display, its operation shall be possible with two deliberate actions or less.

16.3.4. If the AECS control assessment is not part of the AECD approval per Part I of this regulation, the emergency call control functionality shall be subject to paragraph 17.5 16.5.

16.4. AECD AECS information and warning signal

The following provisions are applicable if the AECD AECS information and/or warning signal verification is not part of the approval of an AECD in a vehicle per Part I of this regulation and shall be verified by compliance with the provisions of paragraphs 17.1 and 17.5.

16.4.1. The AECS information and/or warning signal shall be installed such to comply with the relevant installation requirements of Regulation No.121, 01 series of amendments or any later series of amendments.
16.4.2. An information shall be provided regarding the status of the connection emergency call transaction when the AECS is automatically or manually activated.

16.4.3. A warning signal shall be provided when the onboard AECS is not functioning properly. Visual indication of the AECM malfunction shall be displayed at all times while ignition is turned on or the vehicle master control switch is activated (whenever applicable).

A warning signal shall be provided in case of AECM internal malfunction. Visual indication of the AECM malfunction shall be displayed while the failure is present. It may be cancelled temporarily, but shall be repeated whenever the ignition or the vehicle master control switch is being activated (whenever applicable).

16.4.4 The manufacturer shall provide a statement which explains the malfunction indication strategy of the AECS system.

The manufacturer shall provide the type-approval authority with an explanation and technical documentation which shows, in overall terms, how this is achieved. This documentation shall be maintained by the manufacturer and shall be made open for inspection by the technical service at the time of the type approval.

16.5. Hands-free audio performance

The AECS shall provide sufficient voice intelligibility for the vehicle driver occupant and the PSAP according to [Annex XXX] [P.Emergency ITU-T Recommendation]

16.5.1 Testing languages

16.5.1.1 The languages used in the hands free audio performance intelligibility test shall be those of one of the Contracting Parties as identified in Annex 9 and 10 to this Regulation, with the sentences being voiced in good pronunciation. The language used for the testing shall be noted in the test report.

16.5.1.2 The vehicle manufacturer shall demonstrate, through the use of documentation, compliance with all the other languages identified in Annex 9, appendix 1 to this Regulation. Any such documentation shall be appended to the test report.

16.5.1.3 In the case the vehicle type may be equipped with different variants of the AECS with regional specific adjustments, the manufacturer shall demonstrate through documentation that the requirements of this Regulation are fulfilled in all variants.

16.6. Verification of AECS power supply performance

ALTERNATIVE 1 (see para 17.6)

The AECS shall be properly powered after the vehicle has suffered a serious road accident. This shall be verified by compliance with the provisions of paragraph 17.6

ALTERNATIVE 2 (see para 17.6)

After the impact test under Regulation No. 94 and/or Regulation No. 95 whichever relevant, the AECS shall be operable for a period of first not less than 5 minutes in voice communication mode followed by 60 minutes in call-
back mode (idle mode, registered in the network) and finally not less than 5 minutes in voice communication mode. This can be demonstrated by real (actual) test or by calculation/simulation.

17. Performance requirements

17.1 Verification of the HMI installation

Manual control, tell-tale, microphone and loudspeaker installation shall be verified by visual inspection.

17.1.1 Malfunction indication and status indication check

17.1.1.1 Malfunction indication

TBD

17.1.1.2 Status indication

TBD

17.1.2.1 call triggered and connection is being set up

TBD

17.1.2.2 data transmission in progress

TBD

17.1.2.3 data transmission successfully completed

TBD

17.1.2.4 voice call in progress

TBD

17.1.2.5 call not possible

TBD

17.2 Position determination

17.2.1 The AECS shall be able to output the navigation solution in a NMEA-0183 protocol format (RMC, GGA, VTG, GSA and GSV message). The AECD setup for NMEA-0183 messages output to external devices shall be described in the operation manual.

17.2.2 The AECS shall be capable of receiving and processing individual GNSS signals of standard accuracy in L1/E1 band from at least three global navigation satellite systems, including GLONASS, GALILEO and GPS.

17.2.3 The AECS shall be capable of receiving and processing combined GNSS signals of standard accuracy in L1/E1 band from at least three global navigation satellite systems, including GLONASS, GALILEO, GPS and SBAS.

17.2.4 The AECS shall be able to provide positioning information in WGS-84 and PZ-90 coordinate systems.

17.2.5 Horizontal position error shall not exceed:

- under open sky conditions: 15 m at confidence level 0.95 with Position Dilution of Precision (PDOP) not less than 2.5;
- in urban canyon conditions: 40 m at confidence level 0.95 with Position Dilution of Precision (PDOP) not less than 4.

17.2.6 The specified requirements for accuracy shall be provided:
17.2.7 Sensitivity at receiver input shall be:
- GNSS signals detection (cold start) do not exceed 3600 s at signal level on the antenna input of the AECD of minus 144 dBm;
- GNSS signals tracking and navigation solution calculation is available for at least 600 s at signal level on the antenna input of the AECD of minus 155 dBm;
- Re-acquisition of GNSS signals and calculation of the navigation solution is possible and does not exceed 20 s at signal level on the antenna input of the AECD of minus 150 dBm.

17.2.8 Cold start time to first fix shall not exceed
- 60 s for signal level down to minus 130 dBm
- 300 s for signal level down to minus 140 dBm

17.2.9 GNSS signal re-acquisition time after block out of 60 s at signal level down to minus 130 dBm shall not exceed 20 s after recovery of the navigation satellite visibility.

17.2.10 The testing procedures in Annex 8 can be performed either on the AECD unit including post processing ability or directly on the GNSS receiver being a part of the AECD.

17.2 Verification of GNSS functionality

Verification of the GNSS functionality shall be performed, at the request of the manufacturer, either

17.2.1 by using simulated GNSS signal, or
17.2.2 by functional check according to Annex 10.

17.3 Verification of the trigger signal as well as the AECD AECS after a vehicle impact test resistance to impact.

Subject to the approval procedures defined in paragraph 15.1, the verification of the trigger signal as well as the AECD AECS functionality per par. 17.5 resistance to impact and resistance to impact shall be performed either

17.3.1 When simulating performing a collision of the vehicle according to during tests under Regulation No.94 (frontal collision),
17.3.2 When simulating performing a collision of the vehicle according to during tests under Regulation No.95 (lateral collision), or
17.3.3 Subject to Footnote 2 to par. 15.1, when demonstrating with existing documentation (report, images, simulation data or equivalent) that during a Regulation No.94 and Regulation No.95 test

- a triggering signal was generated
- the installation of AECD is not adversely affected by the impact to the vehicle
- the pulse according to Regulation No.17, annex 9 has no negative effect on the AECD functioning,
- the AECD is located within the safe zone borders as defined in paragraph 13.2.12.2.,
- specific components that are located outside of the safe zone are not negatively affected, and
if components of the AECS are out of the above defined area, the requirements are also deemed to be fulfilled if the manufacturer can show to the satisfaction of the technical service that the post-crash functioning is given. This can be e.g.:

- Relevant components are in non-deformed areas,
- Relevant functions are redundant, or
- … (others, tbd.)

17.4 Verification of the triggering signal emission

Subject to the approval procedures defined in paragraph 15.1., the verification of the triggering signal emission shall be performed either

17.4.1 When simulating a collision of the vehicle during tests under Regulation No.94 (frontal collision),

17.4.2 When simulating a collision of the vehicle during tests under Regulation No.95 (lateral collision), or

17.4.3 At the request of the manufacturer, when demonstrating with existing documentation (report, images, simulation data or equivalent) that during a Regulation No.94 and Regulation No.95 test a triggering signal was generated.

17.4.4 For the purpose of paragraph 16.1.4.4 and paragraph 16.1.5.2 only, the manufacturer shall demonstrate with existing documentation (report, images, drawing simulation data or equivalent) that a triggering signal is available for the purpose of AECS.

17.5 Verification of AECS functionality (emission of Ecall, HMI functionality and MSD)

The following items shall be verified according to the test procedures of Annex 9 or paragraph 4 or 5 to Annex 10 of this regulation as appropriate:

17.5.1 Activation of automatic call

17.5.2 When relevant, manual emergency call control operation

17.5.3 Warning Information signal generation and microphone operation

17.5.4 Recording, content and emission of Minimum Set of Data (MSD)

17.5.5 Voice communication

ALTERNATIVE 1 per paragraph 16.6 (keep paragraph 17.6)

17.6 Verification of AECS power supply performance

If AECS power supply assessment is not part of AECD approval according to paragraph 6.6 of Part I of this Regulation, then AECS power supply has to be assessed by one of the following methods:

17.6.1 If the vehicle is subject to the test under Regulation No. 94, then it shall be demonstrated to the satisfaction of the Technical service that the AECS is able to operate after the Regulation 94 test for a period of first not less than 5 minutes in voice communication mode followed by 60 minutes in call-back mode (idle mode, registered in the network) and finally not less than 5 minutes in voice communication mode. This shall be done via

- Performing the sequence of 5 minutes voice call followed by 60 minutes of standby and finally 5 minutes of voice call, or
- Demonstrating that
 - the capacity of the standard vehicle battery (power supply) is sufficient to supply power to all vehicle systems for a period of at least 70 minutes, including AECS, performing the sequence of 5 minutes
voice call followed by 60 minutes of standby and finally 5 minutes of voice call, and

- the main battery (power supply) was not damaged during the Regulation No.94 test

17.6.2 If the vehicle is not subject to the test under Regulation No. 94, and is subject to the test under Regulation No. 95, then it shall be demonstrated to the satisfaction of the Technical service that the AECS is able to operate after the Regulation 95 test for a period of first not less than 5 minutes in voice communication mode followed by 60 minutes in call-back mode (idle mode, registered in the network) and finally not less than 5 minutes in voice communication mode. This shall be done via demonstrating that

- the capacity of the standard vehicle battery (power supply) is sufficient to supply power to all vehicle systems for a period of at least 70 minutes, including AECS, performing the sequence of 5 minutes voice call followed by 60 minutes of standby and finally 5 minutes of voice call, and

- the main battery (power supply) is not damaged during sled test according to Annex 4

17.6.3 If the vehicle is not subject to the test under Regulation No. 94 or 95, then it shall be demonstrated to the satisfaction of the Technical service that the AECS is able to operate after crash test for a period of first not less than 5 minutes in voice communication mode followed by 60 minutes in call-back mode (idle mode, registered in the network) and finally not less than 5 minutes in voice communication mode. This shall be done by

- providing documentation demonstrating that the capacity of the standard vehicle battery (power supply) is sufficient to supply power to all vehicle systems for a period of at least 70 minutes, including AECS, performing the sequence of 5 minutes voice call followed by 60 minutes of standby and finally 5 minutes of voice call in post-crash scenario, and

- verifying that main battery (power supply) is not damaged during sled test according to Annex 4

17.6.4 Tests described in paragraphs 17.6.1 and 17.6.2 shall be performed in the following conditions:

- Vehicle battery (power supply) is fully charged at the time the test begins, at the discretion of the applicant;

- Ambient air temperature: (25 ± 10)ºC

- Average network signal strength

ALTERNATIVE 2 per paragraph 16.6 (Deletion of paragraph 17.6.)

17.6. Verification of AECS power supply performance

17.6.1 If the vehicle is subject to the test under Regulation No. 94, then it shall be demonstrated to the satisfaction of the Technical service that the AECS is able to operate after the Regulation 94 test for a period of first not less than 5 minutes in voice communication mode followed by 60 minutes in call-back mode (idle mode, registered in the network) and finally not less than 5 minutes in voice communication mode.
mode, registered in the network) and finally not less than 5 minutes in voice communication mode. This shall be done via

- Performing the sequence of 5 minutes voice call followed by 60 minutes of standby and finally 5 minutes of voice call, or

- Demonstrating that

 - the capacity of the standard vehicle battery (power supply) is sufficient to supply power to all vehicle systems for a period of at least 70 minutes, including AECS, performing the sequence of 5 minutes voice call followed by 60 minutes of standby and finally 5 minutes of voice call, and

 - the main battery (power supply) was not damaged during the Regulation No.94 test

17.6.2 If the vehicle is not subject to the test under Regulation No. 94, and is subject to the test under Regulation No. 95, then it shall be demonstrated to the satisfaction of the Technical service that the AECS is able to operate after the Regulation 95 test for a period of first not less than 5 minutes in voice communication mode followed by 60 minutes in call-back mode (idle mode, registered in the network) and finally not less than 5 minutes in voice communication mode. This shall be done via demonstrating that

- the capacity of the standard vehicle battery (power supply) is sufficient to supply power to all vehicle systems for a period of at least 70 minutes, including AECS, performing the sequence of 5 minutes voice call followed by 60 minutes of standby and finally 5 minutes of voice call, and

- the main battery (power supply) was not damaged during sled test according to Annex 4

17.6.3 If the vehicle is not subject to the test under Regulation No. 94 or 95, then it shall be demonstrated to the satisfaction of the Technical service that the AECS is able to operate after crash test for a period of first not less than 5 minutes in voice communication mode followed by 60 minutes in call-back mode (idle mode, registered in the network) and finally not less than 5 minutes in voice communication mode. This shall be done by

- providing documentation demonstrating that the capacity of the standard vehicle battery (power supply) is sufficient to supply power to all vehicle systems for a period of at least 70 minutes, including AECS, performing the sequence of 5 minutes voice call followed by 60 minutes of standby and finally 5 minutes of voice call in post-crash scenario, and

- verifying that main battery (power supply) is not damaged during sled test according to Annex 4

17.6.4 Tests described in paragraphs 17.6.1 and 17.6.2 shall be performed in the following conditions:

- Vehicle battery (power supply) is fully charged at the time the test begins, at the discretion of the applicant;

- Ambient air temperature: \((25 \pm 10)\, ^\circ C\)

Average network signal strength
18. Modifications and extension of approval of a vehicle type equipped with an AECD which has been approved to Part I of this regulation

18.1 Every modification of the vehicle type shall be notified to the administrative department which approved the vehicle type. The department may then either:

18.1.1 Consider that the modifications made are unlikely to have an appreciable adverse effect, and that in any case the vehicle still complies with the requirements; or

18.1.2 Require a further test report from the technical service responsible for conducting the tests.

18.2 Notice of the confirmation of approval, specifying the alterations made, or refusal shall be communicated to the Parties to the Agreement applying this Regulation by means of a form conforming to the model in annex 2 to this Regulation.

18.3 The competent authority issuing the extension of approval shall assign a series number to each communication form drawn up for such extension.

19. Conformity of production

19.1 The conformity of production procedure shall comply with the requirements set out in the Agreement, Appendix 2 (E/ECE/324 E/ECE/TRANS/505/Rev.2).

19.2 Every vehicle approved under this Regulation shall be so manufactured as to conform to the type approved by meeting the requirements set out in paragraph 16 above.

20. Penalties for non-conformity of production

20.1 The approval granted in respect of a vehicle type pursuant to this Regulation may be withdrawn if the requirement laid down in paragraph 19.1 above is not complied with or if the vehicle fails to pass the checks prescribed in paragraph 19.2 above.

20.2 If a Party to the Agreement which applies this Regulation withdraws an approval it has previously granted, it shall forthwith so notify the other Contracting Parties applying this Regulation by means of a copy of the approval form bearing at the end, in large letters, the signed and dated annotation “APPROVAL WITHDRAWN”.

21. Production definitively discontinued

If the holder of the approval completely ceases to manufacture a vehicle type approved in accordance with this Regulation, he or she shall so inform the authority which granted the approval. Upon receiving the relevant communication, that authority shall inform thereof the other Parties to the Agreement which apply this Regulation by means of a copy of the approval form bearing at the end, in large letters, the signed and dated annotation “PRODUCTION DISCONTINUED”.

19
22. Names and addresses of technical services responsible for conducting approval tests, and of administrative departments

The Parties to the Agreement which apply this Regulation shall communicate to the United Nations Secretariat the names and addresses of the technical services responsible for conducting approval tests and of the administrative departments which grant approval and to which forms certifying approval or refusal, or extension or withdrawal of approval, issued in other countries, are to be sent.

Part III APPROVAL OF VEHICLES WITH REGARD TO THEIR AECS OR EQUIPPED WITH AN AECD WHICH HAS NOT BEEN SEPARATELY APPROVED ACCORDING TO PART I OF THIS REGULATION

23. Definitions

For the purposes of Part III of this Regulation:

23.1. “Type of vehicle” with regard to its AECD means vehicles that do not differ in such essential respects as:
 (a) Their manufacturer;
 (b) The type of their AECD, or
 (c) Vehicle features which significantly influence the performances of the AECD

23.2. “AECS” (Accident Emergency Call System) means
 - an AECD when installed in a vehicle, or
 - an AECD fully integrated to the vehicle [electrical and data networks], such that its components cannot be separately tested.

23.3. “Multi-task display” means a display on which more than one message can be shown simultaneously.

24. Application for approval of a vehicle type equipped with an AECS

24.1 The application for approval of a type of vehicle equipped with an AECS shall be submitted by the holder of the trade name or mark or by his duly accredited representative.

24.2 A model of the information document is given in Annex 3.

24.3 For each vehicle type equipped with an AECS, the application shall be accompanied by samples of complete sets of vehicles in sufficient quantities for the tests prescribed by this regulation. Additional specimens may be called for at the request of the technical service responsible for conducting the test.

25. Approval

25.1 If the vehicle type submitted for approval in accordance with paragraph 22 above meets the requirements of paragraph 24 of this Regulation, approval shall be granted.

25.2 An approval number shall be assigned to each type approved. The first two digits (at present 00) shall indicate the series of amendments incorporating the most
recent major technical amendments made to the Regulation at the time of issue of the approval. The same Contracting Party shall not assign the same number to another type of vehicle.

25.3 Notice of approval or of refusal, or of extension or withdrawal of approval, or of production definitively discontinued of a type of vehicle pursuant to this Regulation shall be communicated to the Parties to the Agreement which apply this Regulation by means of a form conforming to the model in annex 3 to this Regulation.

25.4 There shall be affixed, conspicuously and in a readily accessible place specified on the approval form, to every vehicle conforming to a vehicle type approved under this Regulation, an international approval mark conforming to the model given in annex 3, consisting of:

25.4.1 A circle surrounding the letter “E” followed by the distinguishing number of the country which has granted approval;

25.4.2 The number of this Regulation, followed by the letter “R”, a dash and the approval number to the right of the circle prescribed in paragraph 14.4.1.

25.5 The approval mark shall be clearly legible and be indelible.

26. Requirements

26.1 General

26.1.1. The AECD installed in the vehicle shall not be of a type approved under Part I of this Regulation, or shall be fully integrated per paragraph 23.2.

26.1.2. In case of an AECD, it shall be connected to the vehicle’s on-board electrical network, so that the AECD functions in all the required modes, and the backup battery (if fitted) is charged. In case of a fully integrated AECS, it shall be such that it functions in all the required modes, and the backup battery (if fitted) is charged.

26.1.3. The AECS, or the installation of the AECD when relevant, shall be such to obtain reception of the GNSS signal and access to a mobile telephone communication network.

The applicant shall provide the relevant information with regard to the mobile network and GNSS to which the AECS is intended.

26.1.4 Vehicles of category M1 shall be subject to the following:

26.1.4.1. Vehicles of category M1 with a total permissible mass less or equal to 2,5 tons and R-point height at or below 700 mm:

26.1.4.1.1. paragraphs 17.4.1 and 17.4.2, or paragraph 17.4.3

26.1.4.1.2. paragraphs 17.3.1 and 17.3.2, or paragraph 17.4.3

26.1.4.1.3. paragraph 17.2

26.1.4.2. Vehicles of category M1 with a total permissible mass less or equal to 2,5 tons and R-point height above 700 mm:

26.1.4.2.1. paragraph 17.4.1 or frontal impact provisions of paragraph 17.4.3.

26.1.4.2.2. paragraph 17.3.1 or frontal impact provisions of paragraph 17.3.3

26.1.4.2.3. paragraph 17.2

26.1.4.3. Vehicles of category M1 with a total permissible mass above 2,5 tons and R-point height less or equal to 700 mm:

26.1.4.3.1. paragraph 17.4.2 or side impact provisions of paragraph 17.4.3
26.1.4.3.2. paragraph 17.3.2 or side impact provisions of paragraph 17.3.3
26.1.4.3.3. paragraph 17.2.
26.1.4.4. Vehicles of category M1 with a total permissible mass above 2.5 tons and R-point height above 700 mm: paragraphs 17.4.4 and 17.2
26.1.5. Vehicles of category N1 shall be subject to the following:
26.1.5.1. Vehicles of category N1 with a R-point height at or below 700 mm:
26.1.5.1.1. paragraph 17.4.2 or side impact provisions of paragraph 17.4.3.
26.1.5.1.2. paragraph 17.3.2 or side impact provisions of paragraph 17.3.3.
26.1.5.1.3. paragraph 17.2
26.1.5.2. Vehicles of category N1 with a R-point height above 700 mm: paragraphs 17.4.4 and 17.2.
26.1.6 Regardless of paragraph 24.1.5, vehicles that meet the technical requirements of Regulation No 95 without a side airbag are not subject to paragraphs 17.3.2., 17.3.3., 17.4.2 and paragraph 17.4.3.
26.2. AECS control
When the vehicle is fitted with an AECS control per paragraph 17.1, the AECS control shall fulfil the requirements of paragraphs 16.2.1 to 16.2.3.
26.2.1. The AECS control shall be installed such to comply with the relevant installation requirements of Regulation No.121.
26.2.2. The AECS control shall be designed and/or placed in such a way that the risk of an inadvertent activation is reduced.
26.2.3. If the AECS control is embedded into a multi-task display, its operation shall be possible with two deliberate actions or less.
26.2.4. The emergency call control functionality shall be subject to paragraph 17.5.
26.3. AECS information and warning signal
The following provisions shall be verified by compliance with the provisions of paragraphs 17.1. and 17.5.
26.3.1. The AECS information and/or warning signal shall be installed such to comply with the relevant installation requirements of Regulation No.121.
26.3.2. Information shall be provided regarding the status of the emergency call transaction when the AECS is automatically or manually activated.
26.3.3. A warning signal shall be provided when the AECS is not functioning properly. Visual indication of the AECS malfunction shall be displayed at all times while ignition is turned on or the vehicle master control switch is activated (whatever applicable).
26.4. The AECS shall properly function after the vehicle has suffered a serious road accident. This shall be verified by compliance with the provisions of paragraph 17.5.
26.5. Hands-free audio performance
The AECS shall provide sufficient voice intelligibility for the vehicle occupant and the PSAP according to [Annex XXX] [P.Emergency ITU-T Recommendation]
26.6. Verification of AECS power supply performance
The AECS shall be properly powered after the vehicle has suffered a serious road accident. This shall be verified by compliance with the provisions of paragraph 17.6.

27. Modifications and extension of approval of a vehicle type equipped with an AECS

27.1 Every modification of the vehicle type shall be notified to the administrative department which approved the vehicle type. The department may then either:

27.1.1 Consider that the modifications made are unlikely to have an appreciable adverse effect, and that in any case the vehicle still complies with the requirements; or

27.1.2 Require a further test report from the technical service responsible for conducting the tests.

27.2 Notice of the confirmation of approval, specifying the alterations made, or refusal shall be communicated to the Parties to the Agreement applying this Regulation by means of a form conforming to the model in annex 3 to this Regulation.

27.3 The competent authority issuing the extension of approval shall assign a series number to each communication form drawn up for such extension.

28. Conformity of production

28.1 The conformity of production procedure shall comply with the requirements set out in the Agreement, Appendix 2 (E/ECE/324 E/ECE/TRANS/505/Rev.2).

28.2 Every vehicle approved under this Regulation shall be so manufactured as to conform to the type approved by meeting the requirements set out in paragraph 26 above.

29. Penalties for non-conformity of production

29.1 The approval granted in respect of a vehicle type pursuant to this Regulation may be withdrawn if the requirement laid down in paragraph 28.1 above is not complied with or if the vehicle fails to pass the checks prescribed in paragraph 28.2 above.

29.2 If a Party to the Agreement which applies this Regulation withdraws an approval it has previously granted, it shall forthwith so notify the other Contracting Parties applying this Regulation by means of a copy of the approval form bearing at the end, in large letters, the signed and dated annotation “APPROVAL WITHDRAWN”.

30. Production definitively discontinued

If the holder of the approval completely ceases to manufacture a vehicle type approved in accordance with this Regulation, he or she shall so inform the authority which granted the approval. Upon receiving the relevant communication, that authority shall inform thereof the other Parties to the Agreement which apply this Regulation by means of a copy of the approval form bearing at the end, in large letters, the signed and dated annotation “PRODUCTION DISCONTINUED”.

31. **Names and addresses of technical services responsible for conducting approval tests, and of administrative departments**

The Parties to the Agreement which apply this Regulation shall communicate to the United Nations Secretariat the names and addresses of the technical services responsible for conducting approval tests and of the administrative departments which grant approval and to which forms certifying approval or refusal, or extension or withdrawal of approval, issued in other countries, are to be sent.
Annex 1

Communication

(Maximum format: A4 (210 x 297 mm))

<table>
<thead>
<tr>
<th>issued by</th>
<th>Name of administration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

concerning³: Approval granted
Approval extended
Approval refused
Approval withdrawn
Production definitively discontinued

of a type of AECD intended to be fitted to vehicles of categories M1 and N1 pursuant Part I

to Regulation No. AECS

Approval No. ... Extension No. ...

1. Trade name or mark of device: ...
2. Manufacturer’s name for the type of device: ..
3. Manufacturer’s name and address: ..
4. If applicable, name and address of manufacturer’s representative:
5. Submitted for approval on: ...
6. Technical Service responsible for conducting approval tests:
7. Date of report issued by that Service ..
8. Number of report issued by that Service ..
9. Brief description ..

AECD information and warning signal: yes/no ..
Hands-free audio equipment (micros and speakers) : yes/no
Back-up battery: yes/no ..
Network access device antenna: yes/no ...
GNSS antenna: yes/no ..
GNSS receiver: yes/no ..

10. Component was tested according to the sled test of Annex 4 (components necessary
for sending the MSD are by default tested to Annex 4 –TCU, back-up battery,
AECD information signal, GNSS antenna when internal to TCU, GNSS receiver
when internal to the TCU):

AECD warning signal: yes/no ...
Hands-free audio equipment (micros and speakers) : yes/no
GNSS antenna (when external to the TCU): yes/no
GNSS receiver (when external to the TCU) : yes/no

³ Distinguishing number of the country which has granted/extended/refused/withdrawn approval (see
approval provisions in the Regulations).

⁵ Strike out what does not apply.
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.</td>
<td>Position of the approval mark: ..</td>
</tr>
<tr>
<td>12.</td>
<td>Reason(s) for extension (if applicable): ..</td>
</tr>
<tr>
<td>13.</td>
<td>Approval granted/refused/extended/withdrawn²:</td>
</tr>
<tr>
<td>14.</td>
<td>Place:...</td>
</tr>
<tr>
<td>15.</td>
<td>Date:..</td>
</tr>
<tr>
<td>16.</td>
<td>Signature: ..</td>
</tr>
<tr>
<td>17.</td>
<td>The list of documents deposited with the Type Approval Authority which has granted approval is annexed to this communication and may be obtained on request.</td>
</tr>
</tbody>
</table>
Annex 2

Communication

(Maximum format: A4 (210 x 297 mm))

issued by: Name of administration:

…………………

…………………

concerning?: Approval granted
\hspace{\textwidth} Approval extended
\hspace{\textwidth} Approval refused
\hspace{\textwidth} Approval withdrawn
\hspace{\textwidth} Production definitively discontinued

of a type of vehicle of category M1 or N1 pursuant Part II of Regulation No. AECS, fitted
with an AECD approved pursuant to Part I of Regulation No. AECS

Approval No. ……………………………………… Extension No. ………………………………………

1. Trade name or mark of device: ………………………………………………………………………

2. Manufacturer’s name for the type of device: ………………………………………………………

3. Manufacturer’s name and address: ………………………………………………………………………

4. If applicable, name and address of manufacturer's representative: ……………………………

5. Submitted for approval on: ……………………………………………………………………………

6. Technical Service responsible for conducting approval tests: …………………………………

7. Date of report issued by that Service: …………………………………………………………………

8. Number of report issued by that Service: ……………………………………………………………

9. Brief description ………………………………………………………………………………………

AEDC information and warning signal: yes/no………………………………………………

10. Position of the approval mark: ………………………………………………………………………

11. Reason(s) for extension (if applicable): ……………………………………………………………

12. Approval granted/refused/extended/withdrawn?: ………………………………………

13. Place: ………………………………………………………………………………………………………

14. Date: ………………………………………………………………………………………………………

15. Signature: ………………………………………………………………………………………………

16. The list of documents deposited with the Type Approval Authority which has granted
approval is annexed to this communication and may be obtained on request.

\footnote{1 \hspace{\textwidth} Distinguishing number of the country which has granted/extended/refused/withdrawn approval (see approval provisions in the Regulations).
\footnote{2 \hspace{\textwidth} Strike out what does not apply.}
Annex 3

Communication

(Maximum format: A4 (210 x 297 mm))

<table>
<thead>
<tr>
<th>issued by</th>
<th>Name of administration:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

concerning*: Approval granted
Approval extended
Approval refused
Approval withdrawn
Production definitively discontinued

of a type of vehicle of category M1 or N1 approved pursuant Part III of Regulation No. AECS.

Approval No. ... Extension No. ...

1. Trade name or mark of device: ..
2. Manufacturer’s name for the type of device: ..
3. Manufacturer’s name and address: ...
4. If applicable, name and address of manufacturer's representative:
5. Submitted for approval on: ..
6. Technical Service responsible for conducting approval tests:
7. Date of report issued by that Service ..
8. Number of report issued by that Service ..
9. Brief description ..
10. Position of the approval mark: ...
11. Reason(s) for extension (if applicable): ...
12. Approval granted/refused/extended/withdrawn²: ...
13. Place: ...
14. Date: ..
15. Signature: ..
16. The list of documents deposited with the Type Approval Authority which has granted approval is annexed to this communication and may be obtained on request.

¹ Distinguishing number of the country which has granted/extended/refused/withdrawn approval (see approval provisions in the Regulations).
² Strike out what does not apply.
Annex 4

Information document relating to the type approval of an emergency call device (AECD)

The following information, if applicable, shall be supplied in triplicate and shall include a list of contents.

Any drawings shall be supplied in appropriate scale and in sufficient detail on size A4 paper or on a folder of A4 format.

Photographs, if any, shall show sufficient detail.

1. Make (trade name of manufacturer): ...
2. Type and general commercial description(s): ...
3. Means of identification of type, if marked on the device:
4. Name and address of manufacturer: ...
5. Location of and method of affixing the approval mark:
6. Address(es) of assembly plant(s): ...
7. Arrangement (indicate components covered by the application of this type approval included in on delivery): ...
8. Description of method(s) of attachment to the vehicle (for aftermarket devices only): ...
9. Sufficiently detailed drawings to identify the complete device, including installation instructions (for aftermarket devices only); the position for the type-approval mark must be indicated on the drawings: ...
Annex 5

Information document relating to the type approval of a vehicle with regard to the installation of emergency call devices

The following information, if applicable, shall be supplied in triplicate and shall include a list of contents.

Any drawings shall be supplied in appropriate scale and in sufficient detail on size A4 paper or on a folder of A4 format.

Photographs, if any, shall show sufficient detail.

General
1. Make (trade name of manufacturer): ...
2. Type and general commercial description(s): ..
3. Means of identification of type, if marked on the vehicle:
4. Location of the marking: ..
5. Location of and method of affixing the approval mark:
6. Category of vehicle: ...
7. Name and address of manufacturer: ...
8. Address(es) of assembly plant(s): ..
9. Photograph(s) and/or drawing(s) of a representative vehicle:
10. E-call device/system
10.1 Make (trade name of manufacturer): ...
10.2 Type and general commercial description(s): ...
10.3 Arrangement (indicate components included in delivery):
10.4 Description of means of automatic transmission of information about the accident (if fitted): ...
10.5 Description of method(s) of attachment to the vehicle:
10.6 Drawing(s) showing the position of the e-call device/system:
11. Approval procedure (I, II, III) ..
Annex 6

Information document relating to the type approval of a vehicle with regard to AECS

The following information, if applicable, shall be supplied in triplicate and shall include a list of contents.

Any drawings shall be supplied in appropriate scale and in sufficient detail on size A4 paper or on a folder of A4 format.

Photographs, if any, shall show sufficient detail.

General

1. Make (trade name of manufacturer): ...
2. Type and general commercial description(s): ..
3. Means of identification of type, if marked on the vehicle:
4. Location of the marking: ..
5. Location of and method of affixing the approval mark: ..
6. Category of vehicle: ..
7. Name and address of manufacturer: ...
8. Address(es) of assembly plant(s): ..
9. Photograph(s) and/or drawing(s) of a representative vehicle:
10. E-call device/system
 10.1 Make (trade name of manufacturer): ..
 10.2 Type and general commercial description(s): ...
 10.3 Arrangement (indicate components included in delivery):
 10.4 Description of means of automatic transmission of information about the accident (if fitted): ...
Annex 7

Test method for resistance to mechanical impact (paragraphs 7.6. and 17.3.)

1. Purpose

The purpose of this test is to verify the safety performance of the representative AECD installation under inertial loads which may occur during a vehicle crash.

2. Installation

2.1. This test shall be conducted either with the complete representative AECD installation or with related representative AECD installation subsystem(s) including the electrical connections. If the manufacturer chooses to test with related subsystem(s), the manufacturer shall demonstrate that the test result can reasonably represent the performance of the complete representative AECD installation with respect to its safety performance under the same conditions.

2.2. The tested-device shall be connected to the test fixture only by the intended mountings provided for the purpose of attaching the representative AECD installation.

3. Procedures

3.1. General test conditions and requirements

The following condition shall apply to the test:

(a) The test shall be conducted at an ambient temperature of 20 ± 10 °C,
(b) At the beginning of the test, the battery shall be charged at the level recommended by the manufacturer;
(c) At the beginning of the test, all protection devices which effect the function of the tested-device and which are relevant to the outcome of the test, shall be operational.

3.2. Test procedure

The AECD shall be decelerated or, at the choice of the applicant, accelerated in compliance with the acceleration corridors which are specified in Table 1. The Technical Service in consultation with the manufacturer shall decide whether the tests shall be conducted in either the positive or negative direction or both.

For each of the test pulses specified, a separate tested-device may be used.

The test pulse shall be within the minimum and maximum value as specified in Table 1. A higher shock level and/or longer duration as described in the maximum value in Table 1 can be applied to the AECD if recommended by the manufacturer.
Figure 1
Generic description of test pulses

Table 1 for M₁ and N₁ vehicles:

<table>
<thead>
<tr>
<th>Point</th>
<th>Time (ms)</th>
<th>Acceleration (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>34</td>
<td>65</td>
</tr>
<tr>
<td>C</td>
<td>38</td>
<td>65</td>
</tr>
<tr>
<td>D</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>F</td>
<td>25</td>
<td>77</td>
</tr>
<tr>
<td>G</td>
<td>47</td>
<td>77</td>
</tr>
<tr>
<td>H</td>
<td>60</td>
<td>0</td>
</tr>
</tbody>
</table>
Annex 8

Test methods for the navigation solutions (paragraphs 7.2 and 17.2)

The purpose of the tests in this Annex is to verify the compliance of navigation characteristics of the AECD/AECS calculated by its GNSS receiver navigation module, to the requirements defined in sections 7.2 and 17.2 of this Regulation.

1. Definitions

For the purposes of this Annex:

1.1 “Global Navigation Satellite System (GNSS)” means a satellite-based system that is used to pinpoint the location, speed and time of a user’s receiver in any point of the Earth surface, water areas of the World Ocean, air space, and in the near-Earth space environment.

1.2 “Global Navigation Satellite System receiver” (“GNSS receiver”) means a component of an AECD/AECS designed to determine time, the position and direction of the vehicle using signals from global navigation satellite systems.

1.3 “Satellite-Based Augmentation System” (SBAS) means a system ensuring the correction of local errors of GNSS systems due to interferences via a network of ground-based stations. (ex: EGNOS, WAAS, SDCM, QZSS)

1.4 “Cold” start mode means the condition of GNSS receiver navigation module when position, velocity, time, almanac and ephemerides data are not stored in the receiver, and therefore the navigation solution is to be calculated by means of a full sky search;

1.5 “Test mode” the function mode of the AECD meant for the check of functions and parameters of the AECD during system operation in the vehicle and also during the AECD tests.

2. Test conditions

2.1 The test object is the AECD/AECS, which includes a navigation receiver and a GNSS global navigation satellite system antenna, specifying navigation characteristics and features of the tested system.

2.1.1 The number of the AECD/AECS test samples shall be at least 3 pieces.

2.1.2 The AECD/AECS is provided for the test with the installed SIM-card, operation manual and the software (provided on electronic media).

2.1.3 The attached documents shall contain the following data:
- device serial number;
- hardware version;
- software version;
- device provider identification number;
- unique device identifier, assigned by the system operator in case of the first activation of the device.

Note: For carrying out tests the originals of the operation manual containing specified convergence shall be provided.

2.1.4 The navigation receiver shall be able to output the navigation solution in a NMEA 0183 protocol format (RMC, GGA, VTG, GSA and GSV messages) [5]. The AECD/AECS
setup for NMEA 0183 messages output to external devices shall be described in the operation manual.

2.2 The purpose of the tests is to verify the compliance of navigation characteristics of the AECD/AECS calculated by its navigation module, to the following requirements:

2.2.1 The navigation receiver being a part of the AECD/AECS shall be capable of receiving and processing individual GNSS signals of standard accuracy in L1/E1 band from at least three global navigation satellite systems, including GLONASS, GALILEO and GPS.

2.2.2 The navigation receiver being a part of the AECD/AECS shall be capable of receiving and processing combined GNSS signals of standard accuracy in L1/E1 band from at least three global navigation satellite systems, including GLONASS, GALILEO, GPS and SBAS.

2.2.3 The navigation receiver being a part of the AECD/AECS shall be able to provide positioning information in WGS-84, PZ-90 and GTRF coordinate systems.

2.2.4 According to 2.2.2, horizontal position error shall not exceed:
 - under open sky conditions: 15 m at confidence level 0.95 with Position Dilution of Precision (PDOP) not more than 2.5
 - in urban canyon conditions: 40 m at confidence level 0.95 with Position Dilution of Precision (PDOP) not more than 4
 - at speed range from 0 to [140] km/h;
 - linear acceleration range from 0 to [2] G;

2.2.5 GNSS signal re-acquisition time after block out of 60 sec and signal level down to minus 130 dBm shall not exceed 20 sec after recovery of the navigation satellite visibility.

2.2.6 Time to first fix shall not exceed:
 - 60 sec for signal level down to minus 130 dBm
 - 300 sec for signal level down to minus 140 dBm.

2.2.7 The navigation receiver being a part of the AECD shall provide:
 - GNSS signals search (detection) at the level of valid signal at the antenna input (antenna amplifier input) of minus144 dBm;
 - GNSS signals tracking and navigation solution calculation at the level of valid signal at the antenna input (antenna amplifier input) of minus 155 dBm;
 - Re-acquisition of GNSS signals and calculation of the navigation solution at the level of valid signal at the antenna input (antenna amplifier input) of minus150 dBm.

2.3 Test conditions

2.1.4. Tests are carried out in normal climatic conditions in accordance with standard ISO 16750-1:2006:
 - air temperature (23 ± 5) °C and
 - relative air humidity of 25 % to 75 %.

2.1.5. Technical service of tested samples during tests is not conducted.

2.1.6. Tests of the AECD/AECS in respect of its navigation receiver shall be performed with test and auxiliary equipment specified in Table 4.

Table XXX4 – Recommended list of measurement instruments, test and auxiliary equipment
<table>
<thead>
<tr>
<th>Equipment name</th>
<th>Required technical characteristics of test equipment</th>
<th>Scale accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global navigation satellite system simulator of GLONASS, Galileo and GPS signals</td>
<td>Number of simulated signals: at least 18</td>
<td>Mean square deviation of random accuracy component of pseudo-range to GLONASS / Galileo / GPS satellites not more:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- stadiometric code phase: 0,1 m;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- communication carrier phase: 0,001 m;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- pseudovelocity: 0,005 m/s.</td>
</tr>
<tr>
<td>Digital stopwatch</td>
<td>Maximum count volume: 9h 59 min 59,99s</td>
<td>Daily variation at (25±5)°C: not more + 1,0s.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time discreteness: 0,01s.</td>
</tr>
<tr>
<td>Vector network analyzer</td>
<td>Frequency range: 300 kHz .. 4000 kHz</td>
<td>AccF 1·10·6</td>
</tr>
<tr>
<td></td>
<td>Dynamic range: (minus 85 .. 40) dB</td>
<td>AccA (0,1 .. 0,5) dB</td>
</tr>
<tr>
<td>Low-noise amplifier</td>
<td>Frequency range: 1200.. 1700 MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noise coefficient: not more 2,0 dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amplifier gain coefficient: 24 dB</td>
<td></td>
</tr>
<tr>
<td>Attenuator</td>
<td>Dynamic range: (0 .. 11) dB</td>
<td>Acc ± 0,5 dB</td>
</tr>
<tr>
<td>Attenuator</td>
<td>Dynamic range: (0 .. 110) dB</td>
<td>Acc ± 0,5 dB</td>
</tr>
<tr>
<td>Power source</td>
<td>Range of direct current voltage setting from 0,1 to 30 V</td>
<td>Acc 0 ± 3%</td>
</tr>
<tr>
<td></td>
<td>Current intensity of output voltage at least 3A</td>
<td>Acc 1 ± 1%</td>
</tr>
</tbody>
</table>

Note – it is allowed to apply other similar types of equipment providing determination of characteristics with required accuracy.
2.1.7. Unless otherwise specified, GNSS signal simulation shall follow “Open sky” pattern as shown in Figure 1.

Figure 1: Open sky definition

<table>
<thead>
<tr>
<th>Zone</th>
<th>Elevation range (deg)</th>
<th>Azimuth range (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0 – 5</td>
<td>0 – 360</td>
</tr>
<tr>
<td>Background</td>
<td>Area out of Zone A</td>
<td></td>
</tr>
</tbody>
</table>

1) Open Sky plot - Attenuation:

<table>
<thead>
<tr>
<th>Attenuation:</th>
<th>0 dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-100 dB</td>
</tr>
</tbody>
</table>

3. Test procedures

3.1. NMEA-0183 messages output test.

3.1.1 Make connections according to Figure 2.

![Diagram of test stand]

Figure 2 – Diagram of test stand
3.1.2 Prepare and turn on the AECD/AECS. By means of operation manual and developer software set up the GNSS receiver navigation module for receiving signals from GLONASS, Galileo, GPS GNSS and SBAS. Set up the GNSS receiver navigation module to output NMEA-0183 messages (messages RMC, GGA, VTG, GSA and GSV).

3.1.3 Set up the simulator according to the simulator user guide. Initialize simulator script with the parameters, given in Table 5 for GLONASS, Galileo, GPS GNSS and SBAS signals.

Table 5 – Main parameters of simulation script for static scenario

<table>
<thead>
<tr>
<th>Simulated parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test duration, hh:mm:ss</td>
<td>01:00:00</td>
</tr>
<tr>
<td>Output frequency</td>
<td>1 Hz</td>
</tr>
<tr>
<td>AEC/D/AECS location:</td>
<td>Any specified land point between latitude range 80°N and 80°S in coordinate system WGS84</td>
</tr>
<tr>
<td>Troposphere:</td>
<td>Standard predefined model by the GNSS simulator</td>
</tr>
<tr>
<td>Ionosphere:</td>
<td>Standard predefined model by the GNSS simulator</td>
</tr>
<tr>
<td>PDOP value</td>
<td>(\leq 2.5) in the test time interval</td>
</tr>
<tr>
<td>Simulated signals</td>
<td>- GNSS GLONASS (L1 frequency band CT code);</td>
</tr>
<tr>
<td></td>
<td>- GNSS Galileo (E1 frequency band OS);</td>
</tr>
<tr>
<td></td>
<td>- GNSS GPS (L1 frequency band C/A code);</td>
</tr>
<tr>
<td></td>
<td>- Combined GNSS GLONASS/Galileo/GPS/SBAS.</td>
</tr>
<tr>
<td>Signal strength:</td>
<td>- GNSS GLONASS;</td>
</tr>
<tr>
<td></td>
<td>- GNSS Galileo;</td>
</tr>
<tr>
<td></td>
<td>- GNSS GPS</td>
</tr>
<tr>
<td></td>
<td>minus 141 dBm;</td>
</tr>
<tr>
<td></td>
<td>minus 135 dBm;</td>
</tr>
<tr>
<td></td>
<td>minus 138,5 dBm</td>
</tr>
<tr>
<td>Number of simulated satellites:</td>
<td>- at least 6 GLONASS satellites;</td>
</tr>
<tr>
<td></td>
<td>- at least 6 Galileo satellites;</td>
</tr>
<tr>
<td></td>
<td>- at least 6 GPS satellites;</td>
</tr>
<tr>
<td></td>
<td>- at least 2 SBAS satellites</td>
</tr>
</tbody>
</table>

3.1.4 By means of corresponding serial interface set the connection between the AECD/AECS and PC. Control the possibility of receiving navigation information via NMEA-0183 protocol. The value of field 6 in the GGA messages is set to “2”.

3.1.5 Test results are considered successful if navigation information via NMEA-0183 protocol is received.
3.2 The Assessment of positioning accuracy in autonomous static mode.

3.2.1 Make connections according to Figure 2.

3.2.2 Prepare and turn on the AECD/AECS. By means of developer software make sure that GNSS receiver navigation module is set up for receiving GNSS GLONASS, Galileo, GPS and SBAS combined signals. Set up navigation the GNSS receiver module to output messages according to the NMEA-0183 protocol (GGA, RMC, VTG, GSA and GSV messages).

3.2.3 Set up the simulator in accordance with its operational manual. Start simulation of for combined GNSS GLONASS, Galileo, GPS and SBAS signals script with set parameters, given in Table 5.

3.2.4 Set up the recording of NMEA-0183 messages after receiving the navigation solution. Up to the moment the simulation script is complete, the NMEA-0183 messages are output by the GNSS receiver to a file.

3.2.5 Upon receiving the navigation solution set up recording of NMEA-0183 messages output by GNSS receiver navigation module to a file, up to the moment the simulation script is complete.

3.2.6 Extract coordinates: latitude (B) and longitude (L) contained in GGA (RMC) messages.

3.2.7 Calculate the systematic inaccuracy of coordinate’s determination on stationary intervals according to formulas (1), (2), for example for latitude coordinate (B):

\[\Delta B(j) = B(j) - B_{true} \]

\[dB = \frac{1}{N} \cdot \sum_{j=1}^{N} \Delta B(j), \]

Where
- \(B_{true} \) is the actual value of B coordinate in “j” time moment, in angle seconds;
- \(B(j) \) is the determined by the GNSS receiver navigation module value of B coordinate in “j” time moment, angle seconds;
- \(N \) is the amount of GGA (RMC) messages, received during the test of GNSS receiver navigation module.

Similarly calculate the systematic inaccuracy of L (longitude) coordinate.

3.2.8 Calculate Standard Deviation (SD) value according to formula (3) for B coordinate:

\[\sigma_B = \sqrt{\frac{\sum_{j=1}^{N} (B(j) - dB)^2}{N - 1}}, \]

Similarly calculate the (SD) value for L (longitude) coordinate.

3.2.9 Convert calculated SD values of latitude and longitude determination from angle seconds to meters according to formulas (4) – (5):
- for latitude:
\[dB(m) = 2 \cdot \frac{a(1-e^2)}{(1-e^2 \sin^2 \varphi)^{3/2}} \cdot \frac{0,5'' \cdot \pi}{180 \cdot 3600''} \cdot dB, \]

(4)

- for longitude:

\[dL(m) = 2 \cdot \frac{a \cdot \cos \varphi}{\sqrt{1-e^2 \sin^2 \varphi}} \cdot \frac{0,5'' \cdot \pi}{180 \cdot 3600''} \cdot dL, \]

(5)

Where

- \(a \) is the major semiaxis of ellipsoid, \(m \)
- \(e \) is the first eccentricity
- \(\varphi \) is the current latitude, in radian.

3.2.10 Calculate horizontal coordinates error (at confidence level 0.95) according to formula (6):

\[\Pi = \sqrt{dB^2(m) + dL^2(m)} + 2 \cdot \sqrt{\sigma^2_B(m) + \sigma^2_L(m)}, \]

(6)

3.2.11 Repeat test procedures according to 3.2.3 – 3.2.9 only for GLONASS GNSS signals with simulation parameters, given in Table 5.

3.2.12 Repeat test procedures according to 3.2.3 – 3.2.9, only for GPS GNSS signals with simulation parameters, given in Table 5.

3.2.13 Repeat test procedures according to 3.2.3 – 3.2.9, for Galileo GNSS signals with simulation parameters, given in Table 5.

3.2.14 Repeat test procedures according to 3.2.3 – 3.2.9, with other AECD/AECS samples, provided for the test.

3.2.15 Determine average values according to (6) obtained for all tested AECD/AECS samples.

3.2.16 Tests results are considered satisfactory if horizontal coordinates position errors as defined by formula (6) obtained with all AECD/AECS samples do not exceed 15 m under open sky conditions at confidence level 0.95 for all simulation scripts.

3.3 The Assessment of positioning accuracy in autonomous dynamic mode. The

3.3.1 Repeat test procedures described in paragraph section 3.2, but except 3.2.10 - 3.2.12 with simulation script for maneuvering movement given in Table 6 (Table 6).

Table 6 – Main parameters of simulation script for maneuvering movement

<table>
<thead>
<tr>
<th>Simulated parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test duration, hh:mm:ss</td>
<td>01:00:00</td>
</tr>
<tr>
<td>Output frequency</td>
<td>1 Hz</td>
</tr>
<tr>
<td>AECD location:</td>
<td>Any specified land point between latitude range 80°N and 80°S in coordinate system WGS84</td>
</tr>
</tbody>
</table>
Model of movement:
- speed, km/h; 140
- turn radius, m; 500
- turn acceleration, m/s² 0.2

Troposphere: Standard predefined model by the GNSS simulator
Ionosphere: Standard predefined model by the GNSS simulator

PDOP value ≤ 2.5 in the test time interval

Simulated signals Combined GLONASS / Galileo / GPS / SBAS.

Signal strength:
- GNSS GLONASS; minus 141 dBm;
- GNSS Galileo; minus 135 dBm;
- GNSS GPS minus 138.5 dBm.

Number of simulated satellites:
- at least 6 GLONASS satellites;
- at least 6 Galileo satellites;
- at least 6 GPS satellites;
- at least 2 SBAS satellites

3.3.2
Determine average values according to (6) obtained for all tested AECD/AECS samples.

3.3.3
Tests results are considered satisfactory if horizontal coordinates errors obtained with all AECD/AECS samples do not exceed 15 m under open sky conditions at confidence level 0.95.

3.4
Test of Movement in shadow areas, areas of intermittent reception of navigation signals and urban canyons.

3.4.1
Repeat test procedures described in section 3.3 for simulation script for movement in shadow areas and areas of intermittent reception of navigation signals (Table 7) with an urban canyon signal pattern described in Fig.3.

Table 7 – Main parameters of movement in shadow areas and areas of intermittent reception of navigation signals

<table>
<thead>
<tr>
<th>Simulated parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test duration, hh:mm:ss</td>
<td>01:00:00</td>
</tr>
<tr>
<td>Output frequency</td>
<td>1 Hz</td>
</tr>
<tr>
<td>Simulated parameter</td>
<td>Value</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>AECD/AECS location Motion start point:</td>
<td></td>
</tr>
<tr>
<td>- CS WGS-84;</td>
<td>Any specified land point between latitude range 80°N and 80°S in coordinate system WGS84</td>
</tr>
<tr>
<td>Model of movement:</td>
<td>Maneuvering movement</td>
</tr>
<tr>
<td>- speed, km/h;</td>
<td>140</td>
</tr>
<tr>
<td>turn radius, m;</td>
<td>500</td>
</tr>
<tr>
<td>- turn acceleration, m/s²</td>
<td>0,2</td>
</tr>
<tr>
<td>Satellite visibility:</td>
<td></td>
</tr>
<tr>
<td>- signal visibility intervals, s;</td>
<td>300</td>
</tr>
<tr>
<td>- signal absence intervals, s.</td>
<td>600</td>
</tr>
<tr>
<td>Troposphere:</td>
<td>Standard predefined model by the GNSS simulator</td>
</tr>
<tr>
<td>Ionosphere:</td>
<td>Standard predefined model by the GNSS simulator</td>
</tr>
<tr>
<td>Geometric factor PDOP value</td>
<td>≤ ≠ 4 in the test time interval</td>
</tr>
<tr>
<td>Simulated signals</td>
<td>Combined GLONASS / Galileo / GPS / SBAS.</td>
</tr>
<tr>
<td>Signal strength:</td>
<td></td>
</tr>
<tr>
<td>- GNSS GLONASS;</td>
<td>minus 141 dBm;</td>
</tr>
<tr>
<td>- GNSS Galileo;</td>
<td>minus 135 dBm;</td>
</tr>
<tr>
<td>- GNSS GPS</td>
<td>minus 138,5 dBm.</td>
</tr>
<tr>
<td>Number of simulated satellites:</td>
<td></td>
</tr>
<tr>
<td>- at least 6 GLONASS satellites;</td>
<td></td>
</tr>
<tr>
<td>- at least 6 Galileo satellites;</td>
<td></td>
</tr>
<tr>
<td>- at least 6 GPS satellites;</td>
<td></td>
</tr>
<tr>
<td>- at least 2 SBAS satellites</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3: Urban canyon definition

<table>
<thead>
<tr>
<th>Zone</th>
<th>Elevation range (deg)</th>
<th>Azimuth range (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0 – 5</td>
<td>0 – 360</td>
</tr>
<tr>
<td>B</td>
<td>5 - 30</td>
<td>210 – 330</td>
</tr>
<tr>
<td>C</td>
<td>5 - 30</td>
<td>30 - 150</td>
</tr>
<tr>
<td>Background</td>
<td>Area out of Zones A, B, C</td>
<td></td>
</tr>
</tbody>
</table>
2) Urban canyon plot attenuation:

| Attenuation: | 0 dB | B -40 dB | C -40 dB | A -100 dB or signal is switched off |

3.4.2 Tests results are considered satisfactory if horizontal coordinates errors obtained with all AECD samples do not exceed 40 m in urban canyon conditions at confidence level 0.95.

3.5 Cold start time to first fix test.

3.5.1 Prepare and turn on the AECD/AECS. By means of developer software make sure that GNSS module is set to receive GNSS GLONASS, Galileo and GPS signals.

3.5.2 Delete all position, velocity, time, almanac and ephemeris data from the navigation receiver.

3.5.3 Set up the simulator according to the simulator user guide. Initialize simulator script with the parameters, given in Table 5 for GNSS GLONASS, Galileo and GPS signals with signal level minus 130 dBm.

3.5.4 By means of a stop watch measure time interval between signal simulation start and the first navigation solution result.

3.5.5 Conduct test procedures according to 3.5.2 – 3.5.4 at least 10 times.

3.5.6 Calculate average time to first fix in cold start mode based on measurements for all AECD/AECS samples, provided for the test.

3.5.7 The test result is considered to be positive, if average values of time to first fix, calculated as described in 3.5.6 do not exceed 60 s for signal level down to minus 130 dBm for all the simulated signals.

3.5.8 Repeat test procedure according to 3.5.1-3.5.5 with signal level minus 140 dBm.

3.5.9 The test result according to 3.5.8 is considered to be positive, if average values of time to first fix, calculated as described in 3.5.6 do not exceed 300 s for signal level down to minus 140 dBm for all the simulated signals.
3.6 Test of re-acquisition time of tracking signals after block out of 60 s.

3.6.1 Prepare and turn on the AECD according to operational manual. By means of developer software make sure that the GNSS receiver navigation module is set up to receive GNSS GLONASS, Galileo and GPS signals.

3.6.2 Set up the simulator according to the simulator user guide. Initialize simulator script with the parameters, given in Table 5 for GNSS GLONASS, Galileo and GPS signals with signal level minus 130 dBm.

3.6.3 Wait for 15 minutes and make sure the GNSS receiver navigation module has calculated AECD/AECS position.

3.6.4 Disconnect the GNSS antenna cable from the AECD/AECS and connect it again after time interval of 60 s. By means of stopwatch determine time interval between cable connection moment and restoration of satellites tracking and calculation of the navigation solution.

3.6.5 Repeat test procedure according to 3.6.4 at least 10 times.

3.6.6 Calculate average value of re-acquisition time of satellite tracking signals by the AECD/AECS for all performed measurements and all AECD/AECS samples provided for the test.

3.6.7 The test result is considered to be positive, if average values of re-acquisition time after block out of 60 s measured as described in 3.6.6 do not exceed 20 seconds.

3.7 Test of navigation receiver sensitivity in cold start mode, tracking mode, and re-acquisition scenario.

3.7.1 Turn on the vector network analyser. Calibrate the network vector analyser according to its operational manual.

3.7.2 Set up the diagram according to Figure 4.

```
Vector-network
analyzer

Low-noise amplifier

Attenuator
0…11dB

Attenuator
0…110 dB
```

Figure 4—Diagram of path calibration

3.7.2 Set zero signal path attenuation on attenuators. Measure the frequency response for a given signal path in the L1/E1 band of GNSS GLONASS/Galileo/GPS. Record the average path transmission factor in [dB] in this frequency band.

3.7.3 Assemble the circuit shown in Figure 5.

```
Low-noise
amplifier

Attenuator
0…11dB

Attenuator
0…110 dB

The AECD

Signals
simulator

Personal Computer

Power
supply
```
3.7.4 Prepare and turn on AECD according to operational manual. By means of developer software make sure that GNSS module is set to receive GNSS GLONASS, Galileo and GPS signals. Clear the navigation module RAM such that the “cold” start mode of the navigation module of the AECD is achieved.

3.7.5 Set signal path attenuation value equal to 110 dB. Prepare GNSS signals simulator according to its operation manual. Start GNSS GLONASS/Galileo/GPS signals simulation script, with parameters given in Table 5. Set output power level of the simulator to minus 130 dBm.

3.7.6 Check that the position, velocity and time information is reset.

3.7.7 Decrease path attenuation using attenuators in 1 dB steps (increase the navigation signal power on the navigation module input) until the AECD acquires navigation fix. Record the signal level on the AECD GNSS module input.

Note — Time interval between path attenuation changes shall not be less than 120 s.

3.7.8 Set the signal path attenuation on attenuators such that the signal on AECD antenna input is equal to minus 140 dBm. Wait for 15 min to allow the navigation module to collect the ephemerides and the GNSS almanac.

3.7.9 Increase the signal path attenuation setting on attenuators in 1 dB steps (decrease the navigation signal power) until the navigation fix is reset. Taking into account the initial transmission factor of the signal path, record such GNSS signal level on an input of the AECD GNSS module antenna that resulted in the last navigation fix of the GNSS module in tracking mode.

3.7.10 Decrease path attenuation using attenuators in 1 dB steps (increase the navigation signal power on the navigation module input) until the AECD acquires navigation fix. Record the signal level on the AECD GNSS module input.

3.7.11 The test results shall be considered positive if the GNSS signal level on the antenna input of the AECD does not exceed minus 144 dBm in cold start mode as recorded in 3.7.8, minus 155 dBm in tracking mode as recorded in 3.7.10, and minus 150 dBm in reacquisition mode as recorded in 3.7.11 for each AECD submitted to tests.

3.7 Test of navigation receiver sensitivity in cold start mode, tracking mode, and reacquisition scenario.

3.7.1 Turn on the vector network analyser. Calibrate the network vector analyser according to its operational manual.

3.7.2 Set up the diagram according to Figure 4.

Figure 4 – Diagram of path calibration
3.7.3 Set zero signal path attenuation on attenuators. Measure the frequency response for a given signal path in the L1/E1 band of GNSS GLONASS/Galileo/GPS. Record the average path transmission factor in [dB] in this frequency band.

3.7.4 Assemble the circuit shown in Figure 5.

![Circuit Diagram]

Figure 5 – Arrangement for evaluation of GNSS module sensitivity

3.7.5 Prepare and turn on AECD/AECS according to operational manual. By means of developer software make sure that GNSS receiver is set to receive GNSS GLONASS, Galileo and GPS signals. Clear the navigation module RAM such that the “cold” start mode of the navigation module of the AECD/AECS is achieved. Check that the position, velocity and time information is reset.

3.7.6 Prepare GNSS signals simulator according to its operation manual. Start GNSS GLONASS/Galileo/GPS signals simulation script, with parameters given in Table 5. Set output power level of the simulator to minus 144 dBm.

3.7.7 By means of a stopwatch, measure time interval between signal simulation start and the first navigation solution result.

3.7.8 Set the signal path attenuation on attenuators such that the signal on AECD/AECS antenna input is equal to minus 155 dBm.

3.7.9 By means of a stopwatch, verify that AECD/AECS still provides navigation solution for at least 600 s.

3.7.10 Set the signal path attenuation on attenuators such that the signal on AECD/AECS antenna input is equal to minus 150 dBm.

3.7.11 Disconnect the GNSS antenna cable from the AECD/AECS and connect it again after time interval of 20 s.

3.7.12 By means of stopwatch, determine time interval between cable connection moment and restoration of satellites tracking and calculation of the navigation solution.

3.7.13 The test result is considered to be positive, if

- The value of time to first fix in “cold” start mode as measured in 3.7.7 do not exceed 3600 s at signal level on the antenna input of the AECD/AECS of minus 144 dBm,

- The GNSS navigation solution is available for at least 600 s at signal level on the antenna input of the AECD/AECS of minus 155 dBm as measured in 3.7.9, and

- The re-acquisition of GNSS signals and calculation of the navigation solution at signal level on the antenna input of the AECD/AECS of minus 150 dBm is possible and time interval measured in 3.7.12 does not exceed 20 s.
Annex 9

Test method for emergency call (paragraphs 7.6, 7.4 and 17.5.)

1. MSD emission assessment shall include verification of at least the following:
 1.1. Vehicle location data is transmitted correctly, position accuracy is within the limits defined by paragraph 6.2, and
 1.2. Trigger time stamp is transmitted correctly, and
 1.3. Vehicle identification number is transmitted correctly

2. MSD emission assessment can be performed either
 2.1. By transmitting MSD to a simulator, or
 2.2. By transmitting MSD via real PLMN (Public Land Mobile Network)

3. Hands-free voice communication assessment (subjective test) shall include verification of the following:
 3.1. Voice originating inside the vehicle can be clearly heard by the remote listener with satisfactory intelligibility, and
 3.2. Speech of the remote speaker can be clearly heard in the vehicle with satisfactory intelligibility
 3.3. The language and sentence used for the test shall be one of those listed in appendix 1 to this Annex.
 3.4. The rated performance according to appendix 2 to this Annex shall, be at least “3”

4. Hands-free voice communication assessment can be performed either
 4.1. By establishing voice communication to a simulator, or
 4.2. By establishing voice communication via real PLMN

5. HMI operation assessment shall include the following
 5.1. Manual trigger (call generation) is working correctly. This is verified by checking if manual trigger leads to
 5.1.1. MSD transmission, which is verified according to paragraph 1 of this Annex, and
 5.1.2. Voice communication being established, which is verified according to paragraph 3 of this Annex.
 5.2. Call status indication is working properly. This is verified by checking that the following statuses are displayed during test according paragraph 5.1 of the current Annex:
 5.2.1. Call initiated (dialing)
 5.2.2. MSD transmitted
 5.2.3. Waiting for PSAP operator to answer
 5.2.4. Call in progress
 5.3. Malfunction indication is working properly. This is verified by checking malfunction indication in at least one of the following conditions:
 5.3.1. Communication module antenna is disconnected, or
 5.3.2. GNSS receiver antenna is disconnected, or
 5.3.3. Microphone(s) is (are) disconnected, or
5.3.4. Loudspeaker(s) is (are) disconnected, or
5.3.5. AECD control module is disconnected from the HMI module
Annex 9, appendix 1

Language and sentence for Hands free voice assessment

Test sentence pairs, as defined in ITU-T P.501, Annex B, shall be used for the exchange of test messages in the send and receive directions.

Test sentence pairs in the language most commonly spoken by the testers shall be selected from a list.

Test sentences
All speech samples shall be processed such that the levels measured using a speech level voltmeter according are equal.

Examples, only languages relevant for Contracting parties signing UNECE AECS are relevant

- **B.3.2 Dutch (fullband)**
 Female 1:
 Dit produkt kent nauwelijks concurrentie.
 Hij kende zijn grens niet.
 Female 2:
 Ik zal iets van mijn carriere vertellen.
 Zijn auto was alweer kapot.

- **B.3.3 English (fullband)**
 Female 1:
 These days a chicken leg is a rare dish.
 The hogs were fed with chopped corn and garbage.
 Female 2:
 Rice is often served in round bowls.
 A large size in stockings is hard to sell.

- **B.3.4 English (American)**
 Female 1:
 We need grey to keep our mood healthy.
 Pack the records in a neat thin case.
 Female 2:
 The stems of the tall glasses cracked and broke.
 The wall phone rang loud and often.

- **B.3.5 Finnish (fullband)**
 Female 1:
 Ole ääneti tai sano sellaista, joka on parempaa kuin vaikeneminen.
 Suuret sydämet ovat kuin valtameret, ne eivät koskaan jäädy.
Female 2:

Male 1:
Rakkaus ei omista mitään, eikä kukaan voi sitä omistaa. Naisen mieli on puhtaampi, hän vaihtaa sitä useammin.

Male 2:
Sydämellä on syynsä, joita järki ei tunne. On oittava kärsimään voidakseen elää.

Female 1:
On entend les gazouillis d'un oiseau dans le jardin. La barque du pêcheur a été emportée par une tempête.

Female 2:
Le client s'attend à ce que vous fassiez une réduction. Chaque fois que je me lève ma plaie me tire.

Male 1:
Vous avez du plaisir à jouer avec ceux qui ont un bon caractère. Le chevrier a corné pour rassembler ses moutons.

Male 2:
Ma mère et moi faisons de courtes promenades. La poupée fait la joie de cette très jeune fille.

Female 1:

Female 2:
Sekunden entscheiden über Leben. Flieder lockt nicht nur die Bienen.

Male 1:
Gegen Dummheit ist kein Kraut gewachsen. Alles wurde wieder abgesagt.

Male 2:
Überquere die Strasse vorsichtig. Die drei Männer sind begeistert.

Female 1:
Im Fernsehen wurde alles gezeigt, Alle haben nur einen Wunsch.

Female 2:
Kinder naschen Süßigkeiten. Der Boden ist viel zu trocken.

Male 1:
Mit einem Male kam die Sonne durch. Das Telefon klingelt wieder.

Male 2:
Sekunden entscheiden über Leben. Flieder lockt nicht nur die Bienen.

Female 1:
Non bisogna credere che sia vero tutto quello che dice la gente. Tu non conosce ancora gli uomini, non conosci il mondo. Dopo tanto tempo non ricordo più dove ho messo quella bella foto, ma se aspetti un po' la cerca e te la prendo.

Female 2:
Questo tormento durerà ancora qualche ora. Forse un giorno poi tutto finirà e tu potrai tornare a casa nella tua terra. Lucio era certo che sarebbe diventato una persona importante, un uomo politico o magari un ministro. Aveva a cuore il bene della società.

Male 1:
Non bisogna credere che sia vero tutto quello che dice la gente tu non conosci ancora gli uomini, non conosci il mondo.
Dopo tanto tempo non ricordo più dove ho messo quella bella foto ma se aspetti un po' la cerco e te la prendo.

Male 2:
Questo tormento durerà ancora qualche ora. Forse un giorno poi tutto finirà e tu potrai tornare a casa nella tua terra.
Lucio era certo che sarebbe diventato una persona importante, un uomo politico o magari un ministro, aveva a cuore il bene della società.

Female 1:
彼は鮎を釣る名人です。
Kare wa ayu wo tsuru meijin desu.
古代エジプトで十進法の原理が作られました。
Kodai ejipto de jushinhou no genri ga tsukuraremashita.

Female 2:
読書の楽しさを知ってください。
Dokusho no tanoshisa wo shite kudasai.
人間の価値は知識をどう活用するかで決まります。
Ningen no kachi wa chishiki wo dou katsuyou suruka de kimarimasu.

Male 1:
彼女を説得しようとしても無駄です。
Kanojo wo settoku shiyoutoshitemo mudadesu.
その昔ガラスは大変めずらしいものでした。
Sono mukasi garasu wa taihen mezurashii monodeshita.

Male 2:
近頃の子供たちはひ弱です。
Chikagoro no kodomo tachi wa hiyowa desu.
イギリス人は雨の中を平気で濡れて歩きます。
Igirisujin wa ameno nakawo heikide nurete arukimasu.

Female 1:
Pielęgniarki były cierpliwe.
Przebiegał szybko przez ulicę.

Female 2:
Ona była jego sekretarką od lat.
Dzieci często płaczą kiedy są głodne.

Male 1:
On był czarującą osobą.
Lato wreszcie nadeszło.

Male 2:
Większość dróg było niezmiernie zatłoczonych.
Mamy bardzo entuzjastyczny zespół.

Female 1:
No arroje basura a la calle.
Ellos quieren dos manzanas rojas.

Female 2:
No cocinaban tan bien.
Mi afeitadora afeita al ras.

Male 1:
Vé y siéntate en la cama.
El libro trata sobre trampas.

Male 2:
El trapeador se puso amarillo.
El fuego consumió el papel.
Annex 9, appendix 2

Intelligibility/listening effort (ITU P1100)

Description:
The rating table is applied to evaluate the effort required to understand the meaning of words and sentences. The applicable test cases are single talk and the rating scale is given in Table C.5.

The question heading this scale shall be:

“How would you judge the effort required to understand words and sentences of your remote partner?”

Table C.5 – Intelligibility/listening-effort

<table>
<thead>
<tr>
<th>Rating description</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every word was clearly understood with no effort required</td>
<td>5</td>
</tr>
<tr>
<td>Speech of the other side was understood with no appreciable effort required</td>
<td>4</td>
</tr>
<tr>
<td>Some words were hard to understand, moderate effort was required</td>
<td>3</td>
</tr>
<tr>
<td>Many words were hard to understand, considerable effort was required</td>
<td>2</td>
</tr>
<tr>
<td>No meaning understood with any feasible effort</td>
<td>1</td>
</tr>
</tbody>
</table>
Annex 10

Test method for verifying the on-board AECD via functional check (paragraph 17.3.3 16.3.3.)

1. The functional check of the in-vehicle system shall be performed via one out of the three four methods laid down in paragraphs 2. to 5. below.

2. Verification of functional state of the in-vehicle system by using HMI (visual control of tell-tale)

 When the in-vehicle AECD is capable to
 - check and diagnose the for all devices belonging to the AECD scope (Antennas, power supply, Mic, speaker) and
 - discriminate a network failure (*) from an internal failure of the AECD Unit

 the communication with GNSS and mobile networks and PSAP is deemed to be compliant if no failure warning is indicated by the HMI.

 (*) An obstruction of the antenna by a metallic part could be detected and indicated as a network failure. In this case, a visual control can be performed around the antenna (or AECD Unit in the case of an internal antenna), if the antenna is not within the safe zone.

3. Verification of functional state of the in-vehicle system by internal memory checking

 When
 - the vehicle's diagnostic bus is still functioning and the AECS Unit is still powered (e.g. by main or auxiliary battery), or after AECD Unit disassembly and test bench analysis, and
 - the in-vehicle AECD is capable to
 - check and diagnose the for following all devices belonging to the AECD scope (Antennas, power supply, Mic, speaker, ...), and
 - check and diagnose the for wiring harness, information signal and manual control, and
 - memorize all steps of an emergency call transaction (e.g.: trigger signal reception, construction of MSD, etc.)

 the communication with GNSS and mobile networks and PSAP is deemed to be compliant if the AECD unit has memorized the correct emergency call transaction, and no failure is present in the memory.

4. Verification of functional state of the in-vehicle system by separated functional test

 When
 - the in-vehicle AECD is capable to memorize all steps of an emergency call transaction (e.g.: trigger signal reception, construction of MSD, etc.), and
all devices belonging to the AECD scope (Antennas, power supply, Microphone, speaker, wiring harness and manual control) are removable and/or their connectors are accessible (for electrical testing), for the visual control or/and for functional tests.

The communication with GNSS and mobile networks and PSAP is deemed to be compliant if the AECD unit has memorized the correct emergency call transaction, if all electrical tests are satisfactory and if all devices belonging to the AECD scope are in good condition and functioning correctly.

5. Verification of functional state of the in-vehicle system by functional transmission test with wired procedure

When

- the mobile phone antenna connector is accessible, and
- all other parts (wire) between this antenna and the AECD Unit are accessible or removable for the visual control or for functional tests

the communication with GNSS and mobile networks and PSAP is deemed to be compliant if the emergency call transaction is correct (with PSAP simulator) and if all the electrical tests between antenna and the AECD unit are satisfactory.
Annex 10, Appendix 1: Verification of functional state of the in-vehicle system by separated functional test

This appendix defines minimum test conditions (as far as applicable) and failure criteria for verification of functional state of the in-vehicle system by separate functional test

(3) AECDS

<table>
<thead>
<tr>
<th>Subject</th>
<th>Item subject to confirmation</th>
<th>Criteria</th>
<th>Example of confirmation method</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECDS</td>
<td>Generation of triggering (when a collision detection signal (CDS) is received)</td>
<td>- No record of triggering signal in AECS unit before collision test.</td>
<td>- The record confirmation of the internal memory using a diagnostic tool.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Record of triggering signal is correctly stored in the AECDS memory. The time stamp of the record should be same or right after the time of collision test if unit has a capability to store time stamp of record.</td>
<td>- The visual observation of the eCall operation display</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Activation of emergency calling is confirmed.</td>
<td></td>
</tr>
<tr>
<td>Initiate transmission of MSD</td>
<td>MSD is correctly stored in the AECDS memory. The time stamp of the record should be same or right after the time of crash test if unit has a capability to store time stamp of record.</td>
<td>- Confirm that MSD data (notice data of a collision transmitted to a call center) remains in the internal memory as un-transmitting</td>
<td>- The record confirmation of the internal memory</td>
</tr>
</tbody>
</table>

(2) Harness

<table>
<thead>
<tr>
<th>Subject</th>
<th>Item subject to confirmation</th>
<th>Criteria</th>
<th>Example of the confirmation method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery and battery harness (in case of absence of sub-battery)</td>
<td>Battery function</td>
<td>Voltage above operating minimum value (at AECDS side)</td>
<td>- Battery voltage confirmation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Termina(1) of line connected confirmation</td>
</tr>
<tr>
<td>Sub battery (in case of presence of sub-battery)</td>
<td>Battery function</td>
<td>No damage/deformation of AECDS</td>
<td>Visual observation of the AECDS</td>
</tr>
<tr>
<td>Telephone antenna feeder wire</td>
<td>- Wire snapping</td>
<td>a. For external antenna: No evidence of snapping damage and of wire short-circuit b. For internal antenna: No damage/deformation of AECDS</td>
<td>a. By conducting the following tests:</td>
</tr>
<tr>
<td></td>
<td>- Wire short-circuit</td>
<td>i. measurement of resistance value between termina(1) lines</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. measurement of resistance value between line and vehicle structure ground or</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Visual observation of the AECDS</td>
<td></td>
</tr>
</tbody>
</table>
(3) Component

<table>
<thead>
<tr>
<th>Subject</th>
<th>Item subject to confirmation</th>
<th>Criteria</th>
<th>Example of the confirmation method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telephone antenna (internal)</td>
<td>Function</td>
<td>No damage/deformation of AEC</td>
<td>Visual observation of AEC</td>
</tr>
<tr>
<td>Telephone antenna (external)</td>
<td>Function</td>
<td>No damage/deformation</td>
<td>No breakage by visual observation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Measured Voltage Standing Wave Ratio (VSWR) satisfies the prescribed value</td>
<td>When there are breakage and deformation, remove antenna and confirm receiving sensitivity</td>
</tr>
<tr>
<td>Tell-tale</td>
<td>Display</td>
<td>- No damage/deformation - Tell-tale lights on</td>
<td>- Visual observation of the display - apply prescribed voltage</td>
</tr>
<tr>
<td>Microphone</td>
<td>Possibility of voice communication</td>
<td>Keep initial prescribed performance</td>
<td>- Output sound pressure measurement by the standard input - Confirm by hearing the output of speaker with input (voice) to microphone (using function confirming software) - The language and sentence used for the test shall be one of those listed in appendix 1 to this Annex. - The rated performance according to appendix 2 to this Annex shall be at least “3”</td>
</tr>
<tr>
<td>Speaker</td>
<td>The possibility of voice communication</td>
<td>Keep initial prescribed performance</td>
<td>- Output voltage measurement by the standard input sound - Confirm by hearing the output of speaker with input (voice) to microphone (using function confirming software) - The language and sentence used for the test shall be one of those listed in appendix 1 to this Annex. - The rated performance according to appendix 2 to this Annex shall be at least “3”</td>
</tr>
<tr>
<td>Wiring Harness</td>
<td>- Wire snapping - Wire short-circuit</td>
<td>No damage</td>
<td>Continuity check</td>
</tr>
<tr>
<td>Manual control</td>
<td>Function</td>
<td>No damage/</td>
<td>Disconnect button and measure the open and closed condition</td>
</tr>
</tbody>
</table>
Annex 10, Appendix 2 Verification of functional state of the in-vehicle system by functional transmission test with wired procedure (for AECS with external antenna)

This appendix defines minimum test conditions (as far as applicable) and failures criteria for verification of functional state of the in-vehicle system by functional transmission test with wired procedure (for AECS with external antenna)

(1) AECD

<table>
<thead>
<tr>
<th>Subject</th>
<th>Item subject to confirmation</th>
<th>Criteria</th>
<th>Example of the confirmation method</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECD</td>
<td>Activation of automatic call and dial-up.</td>
<td>No calling sequence to PSAP performed before collision test</td>
<td>Connect AECD to Radio communication tester by wire or confirm status of indicator.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calling sequence to PSAP is performed after collision test</td>
<td>Confirm emergency calling sequence by PSAP simulator.</td>
</tr>
<tr>
<td>Emission of MSD with antenna wire connection to simulator after the collision.</td>
<td>MSD has been emitted.</td>
<td>After completion of the emergency calling sequence, confirm the content of MSD</td>
<td></td>
</tr>
</tbody>
</table>

(2) Harness

<table>
<thead>
<tr>
<th>Subject</th>
<th>Item subject to confirmation</th>
<th>Criteria</th>
<th>Example of the confirmation method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery and battery harness (in case of absence of sub-battery)</td>
<td>Battery function</td>
<td>Voltage above operating minimum value (at AECD side)</td>
<td>Availability of battery can be confirmed by communication test with wire.</td>
</tr>
<tr>
<td>Sub battery (in case of presence of sub-battery)</td>
<td>Battery function</td>
<td>Correct AECS operation AECS with regard to prescribed functional items</td>
<td>-</td>
</tr>
<tr>
<td>Telephone antenna feeder wire</td>
<td>- Wire snapping - Wire short-circuit</td>
<td>No evidence of snapping damage and of wire short-circuit</td>
<td>By conducting the following tests: 3. measurement of resistance value between termination of lines ii. measurement of resistance value between line and vehicle structure ground</td>
</tr>
<tr>
<td>Subject</td>
<td>Item subject to confirmation</td>
<td>Criteria</td>
<td>Example of the confirmation method</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Telephone antenna</td>
<td>Function</td>
<td>No damage/deformation</td>
<td>No breakage by visual observation</td>
</tr>
<tr>
<td>Tell-tale</td>
<td>Display</td>
<td>- No damage deformation</td>
<td>- Visual observation of the display</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Tell-tale lights on</td>
<td>- Apply prescribed voltage</td>
</tr>
<tr>
<td>Microphone</td>
<td>Possibility of voice</td>
<td>Voice message from vehicle can be</td>
<td>Confirm voice condition during</td>
</tr>
<tr>
<td></td>
<td>communication</td>
<td>confirmed at PSAP simulator.</td>
<td>talking test with wire procedure.</td>
</tr>
<tr>
<td>Speaker</td>
<td>Possibility of voice</td>
<td>Voice message from PSAP simulator</td>
<td>- One inspector of the technical</td>
</tr>
<tr>
<td></td>
<td>communication</td>
<td>can be confirmed at vehicle</td>
<td>service makes telephone call to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>side.</td>
<td>another inspector of PSAP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>simulator side through PSAP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>simulator.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- The language and sentence used</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>for the test shall be one of those</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>listed in appendix 1 to this Annex.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- The rated performance according</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to appendix 2 to this Annex shall,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>be at least “3”</td>
</tr>
<tr>
<td>Manual control</td>
<td>Function</td>
<td>No damage/deformation</td>
<td>Disconnect button and measure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>the open and closed condition</td>
</tr>
</tbody>
</table>
Annex 11

Definition of Minimum Set of Data – MSD (paragraph 13.7)

The following table lists the minimum set of data (MSD) that shall be conveyed during the Ecall data transmission to the PSAP.

The exact format and content is subject to national regulations.

Additional mandatory or optional elements may be subject to national regulations.

Table 1 — Minimum Set of Data (MSD) to be conveyed to PSAP

<table>
<thead>
<tr>
<th>Short Name of MSD Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>automaticActivation</td>
<td>Indicates whether a call was automatically or manually triggered</td>
</tr>
<tr>
<td>testCall</td>
<td>Indicates whether the call is a test call or a real emergency call</td>
</tr>
<tr>
<td>positionCanBeTrusted</td>
<td>Indicates whether the position given in the position elements can be trusted or has only low confidence</td>
</tr>
<tr>
<td>vehicleType</td>
<td>Provides a vehicle type</td>
</tr>
<tr>
<td>VIN</td>
<td>Vehicle Identification number</td>
</tr>
<tr>
<td>vehiclePropulsionStorageType</td>
<td>Provides the propulsion type of the vehicle</td>
</tr>
<tr>
<td>timeStamp</td>
<td>Timestamp of the initial data message generation within the current Ecall incident event</td>
</tr>
<tr>
<td>positionLatitude</td>
<td>The last known vehicle Latitude position determined at the latest moment possible before message generation</td>
</tr>
<tr>
<td>positionLongitude</td>
<td>The last known vehicle Longitude position determined at the latest moment possible before message generation</td>
</tr>
<tr>
<td>vehicleDirection</td>
<td>The vehicle’s last known real direction of travel determined at the latest moment possible before message generation</td>
</tr>
</tbody>
</table>
Annex 12

HMI (AECD/AECS control) testing
Annex 13

TABLE OF TESTS

<table>
<thead>
<tr>
<th></th>
<th>M1 ≤ 2.5 t</th>
<th>M1 > 2.5 t</th>
<th>N1 ≤ 700 mm</th>
<th>N1 > 700 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN R94 impact test</td>
<td>§ 16.1.5.1.</td>
<td>§ 16.1.5.3.</td>
<td>§ 16.1.5.1.</td>
<td>§ 16.1.5.4.</td>
</tr>
<tr>
<td>UN R95 impact test</td>
<td>§ 17.3.1.</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Documentation</td>
<td>§ 17.3.3.</td>
<td>Frontal impact provisions of § 17.3.3.</td>
<td>Side impact provisions of § 17.3.3.</td>
<td>Side impact provisions of § 17.3.3.</td>
</tr>
</tbody>
</table>

GNSS § 16.2.
Justifications:

Paragraph 1.1: the Regulation is compartmented in three parts according to the decision made at AECS-01:
- Part I aims the approval of a type of Ecall device (AECD)
- Part II aims the approval of a vehicle type when fitted with Ecall device (AECD) approved to Part I
- Part III aims the approval of a vehicle type when fitted fully integrated Ecall system (AECS)

Paragraph 1.2: according to the decision of AECS-06, the regulation covers a restricted scope i.e. the capabilities of the ecall to connect to the mobile phone networks shall not be part of the approval. This was agreed by the informal group on the following reasons:
- Mobile phone networks legislation is not under the control of UNECE/WP29
- Mobile phones networks evolve too rapidly to be regulated by a UN regulation in the frame of the 58 Agreement.
- Regulating the capabilities of the ecall to connect to the mobile phone networks would jeopardise the efforts of the vehicle and AECD manufacturers to best match the evolution of technology.

At the 7th meeting of the informal group, the experts agreed to clearly identify the boundaries of the regulation by listing the items not covered by the regulation.

Paragraph 1.3: In order to avoid extra costs due to the implementation of the Ecall, only the vehicles that are designed by construction to be fitted with an automatic triggering system related to the detection of an impact, are included in the scope of the regulation. For defining these vehicles, it is assumed that all vehicles approved, or subject to the approval to the regulations dedicated to the assessment of the resistance to impact, are fitted with an automatic triggering system. This is because, in the current state of the technology, there is no other way to fulfil the requirements of these regulations than by equipping the vehicles in stake with “airbags” whose inflation must be triggered by an automatic triggering system. The informal group was keen to take the opportunity of the pre-existence of these airbag automatic triggering systems for triggering the ecall intervention.

Paragraph 1.4: At AECS-08, the idea of “if fitted” requirements for GNSS connectivity assessment was adopted. Some experts requested that the text confirm freedom for Contracting Parties to nationally apply GNSS connectivity approval for the case the UN regulation applicant opts for approval without GNSS connectivity assessment.

Paragraph 1.5: proposal for exemptions:
- Armoured vehicles: For security reasons GNSS related devices are usually not installed on these vehicles. They are in addition often equipped with scrambling equipment because their users usually refuse tracing systems. A definition of “armoured vehicle” does already exist in RE.3: “Vehicle intended for the protection of conveyed passengers and/or goods and complying with armour plating anti-bullet requirements”.
- M1 vehicles with a total permissible mass > 3.5t:
The current version of the draft Regulation includes vehicles of category N1 (limited to total permissible mass < 3.5 t) and vehicles of category M1 (without mass limit).

- The vehicle fleet includes a small number of M1 vehicles with a GVW > 3.5t which are based on vehicles of category N2, N3, M2 or M3.
- Limiting the scope of the regulation to the same maximum masses for commercial vehicles and passenger cars would reduce the burden for those manufacturers producing vehicles of category M1 as a variant of N2, N3, M2, M3 vehicles.

Paragraph 2: All definitions are taken from the CLEPA documents AECS-06-02-Rev.1 and AECS-07-08 and were further amended at AECS-08 for making an accurate list of minimum parameters.

Paragraphs 3, 4 and 5: Provisions taken from the CLEPA document AECS-06-02-Rev.1

Paragraph 6: Basic description of the sequence of operation of the Ecall. The references to the TPS are still subject to debate in the informal group.

Paragraph 6.1: Decision taken at AECS-05 to refer to the last series of amendments to UN R10, and to introduce the sentence in [], until the group has solved the question at a future step. AECS-07 decided to request guidance to GRSG.

Paragraph 6.2: Provisions taken from the CLEPA document AECS-06-02-Rev.1 and AECS-07-02 (RUS, GSA, CLEPA). The group at its 8th meeting agreed on the addition of if-fitted requirements for GNSS receiver supporting at least three GNSS including GLONASS, Galileo and GPS. “If-fitted” requirements permit the manufacturer to have the flexibility in the positioning technology. The amendments in paragraph 1.4. make the second subparagraph unnecessary.

Paragraph 6.3: SIM-chip or similar technology is targeted in this paragraph for identification and authentication on the mobile phone network or the PSAP. No need for further details as telecommunication performances requirements are out of the scope of the regulation.

Paragraph 6.4: Basic description of the sequence of operation of the Ecall. The references to the TPS are still subject to debate in the informal group. For the sake of logic in the text, paragraph 6.4 is deleted and its provisions can now be found in the introductory paragraph of Section 6.

Paragraph 6.5: Provisions with regard to Human Machine Interface. Consistency necessary with the provisions of Part II (installation section). The introductory paragraph addresses the necessary link between Part I and Part II of the regulation, taking into account that the supplier is unable to know, at the time of AECD Type Approval, whether the parts will be approved to Part II. The wording is then linked to paragraph 14.1. (AECS approval procedure) and to the new Annexes XX, YY and ZZ (Communication Forms).

The group agreed that the Ecall regulation should focus on when the warning shall be given to the driver, while a dedicated regulation (i.e. UNR121 – controls and tell-tales) should address how the warning shall be given.

The group also agreed to limit the warning signals to those providing the status of the emergency call (whether automatic or manual) and the presence of an internal malfunction.

Paragraph 6.6: Provisions with regard power supply. AECS-06 reached the proposed text as an agreement in principle. AECS-08 held a debate on the best way to assess the power supply performances. Either the AECD has a self-supporting energy supply, or energy supply is outsourced. And either the vehicle is subject to regulations Nos.94/95 crash tests, or it is not. The group found logical:
- At device level: if fitted approach, device test.
- At vehicle level:
 - Verification of performance before impact (perhaps nonsense as this is assumed to be fulfilled anyway)
 - State of power source and its relevant connections after impact.
Paragraph 6.7: Provisions with regard to the assessment of the resistance to impact. The informal group did not yet reach consensus on the test procedures and pass/fail criteria. These items are subject to Annex 4. At AECS-07, CLEPA proposed further references—AECS-08 adopted the final provisions and references: paragraph 6.7.1. provides a list of components subject to mandatory tests, paragraph 6.7.2. provides a list of components subject to optional test, at the request of the applicant.

Paragraph 7: Performance requirements: item deleted per the proposal from CLEPA AECS-06-02-Rev.1

Paragraphs 8 to 12: conventional paragraphs per the 58 Agreement.

Paragraph 12: Definitions that are considered necessary for Part II. This section is still under construction, some new definitions may need to be added. The proposed definitions include the OICA proposal for a “safe zone” that was introduced at AECS-05; there is currently no final decision of the group with regard to this principle. AECS-07 agreed to
- delete “trade name and mark” from the definition of type of vehicle.
- Exclude the glazing from the safe zone.

Some further additional definitions (MSD, AECS, multi-task display) are still under discussion.

Paragraph 13: conventional text per a regulation annexed to the 58 Agreement.

Paragraph 14: Approval provisions.

Paragraph 14.1: The text of paragraph 14.1. was amended at AECS-07 for improving the link between Part I and Part II with regard to the verification of information and warning signal, which can be performed either under Part I or Part II of the regulation.

Attempt to capture the approval procedures as proposed by OICA per their document AECS-05-04. Some solution must still be found for limiting the application of Procedure III to the vehicles not subject to UN R94 or 95, and not fitted with any triggering mechanism.

The footnote 2 second indent focuses on vehicles being already approved to to UN R94 or 95. These vehicles must be exempted from the obligation of a destructive test for the sake of AECD installation approval, but it is legitimate that the Contracting Parties could assess their AECD performances.

Footnote 2 second indent directs Procedure III to vehicles already approved to UN R94 and 95.

Paragraph 14.2 to 14.5: conventional text per a regulation annexed to the 58 Agreement.

Paragraph 15.1.1: according to the definition of Part II of the regulation, the requirements for vehicles equipped with an approved AECD should apply only when the vehicles is indeed equipped with an AECD approved to Part I of the regulation.

Paragraph 15.1.2: provision per the initial proposal AECS-01-05 (RUS), as a guarantee that the AECD has sufficient power supply at all time.

Paragraph 15.1.3: requirement that the AECD capabilities with regard to localisation and access to mobile phone networks, which are assumed to be demonstrated par Part I of the regulation, are not jeopardised by the AECD installation in the vehicle.

It is deemed beneficial that some information on the performances of the true AECD, with regard to the connections to the networks, are provided to the Technical Services.

Paragraph 15.1.4: attempt to capture the provisions for vehicles of category M1 per the table established as in document AECS-04-14 paragraph 7.3. The references to the requirement paragraphs are updated.
Paragraph 15.1.5: Attempt to capture the provisions for vehicles of category N1 per the table established as in document AECS-04-14 paragraph 7.3. The references to the requirement paragraphs are updated.

Paragraph 15.1.6: Verification of the triggering signal emission due to side impact is not relevant when the vehicle complies with the provisions of UN R94 despite the absence of airbag, because such vehicle does not have any triggering system. The references to the requirement paragraphs are updated.

Paragraph 15.2: AECD manual control is not required on all vehicles and the informal group still must define a common position with regard to the manual control installation.

Paragraph 15.2.1: It is of common understanding that the particular regulations must regulate WHETHER the manual control must be installed, while the UN R121 (controls and tell-tales) must regulate HOW the manual control must be installed.

Paragraph 15.2.2: In spite of the comments above, when a regulation covers an item particularly related to safety in case of accident, this regulation may add specific requirements.

Paragraph 15.2.3: This paragraph is included for avoiding continuous display of the AECS control on the multi-task display, hence avoiding mishandling and accidental AECS activation (see paragraph 15.2.2).

Paragraph 15.2.4: Agreement within the informal group that the assessment of the manual control can be conducted either per Part I of the regulation (paragraph 6.5.3), or per Part II of the regulation (paragraph 15.2.3).

Paragraph 15.3: Provisions with regard to Human Machine Interface. Consistency necessary with the provisions of Part I (device section). The group agreed that the emergency call regulation should focus on when the warning shall be given to the driver, while a dedicated regulation (i.e. UNR121 – controls and tell-tales) should address how the warning shall be given. A reference to the relevant HMI test methods is added for consistency with the new regulation structure.

Paragraph 15.3.1: This paragraph is included because it is necessary that the AECS warning information respect the relevant provisions of UN R121, similarly to the AECS control.

Paragraph 15.3.2: The information regarding the status of the call transaction is relevant, rather than that of the connection itself.

Paragraph 15.4: This paragraph addresses functionality of the AECS post-crash; it is necessary for covering all the aspects of AECS i.e. before and after crash, in the frame of the OICA proposal for re-structuring the section 16 (see justifications to paragraph 16 below).

Paragraph 15.5: Proposal from RUS to add: Paragraph adding audio performance requirements, referring to the ITU-T recommendations.

Paragraph 16.1: Verification of the Human Machine Interface per visual inspection: the presence of HMI can be visually verified. The tests to be performed prior to crash test are indicated in paragraph 15.3.

Paragraph 16.2: All references to the communication with the mobile phone networks have been deleted due to the decision of the informal group to restrict the scope to the “red components”. This proposal indeed endorses the option that communication with GNSS shall be assessed as an option at manufacturer’s choice. OICA proposed at AECS-07 that an assessment of connection with “a” GNSS constellation is performed, but the OICA proposal does not specify any particular GNSS constellation; this remains at the full choice of the manufacturer for the sake of Type Approval.

Paragraph 16.3: Performance requirements for resistance of AECS to vehicle impact. The verification shall be performed according to the approval procedure chosen per paragraph 14.1: frontal or lateral collision, or demonstration with functional provisions. This latter procedure should be primarily used for extensions of
existing approvals and when the vehicle is already approved to the frontal/lateral impact regulations prior the entry into force of this regulation. In this regard, OICA proposed at AECS-07 inserting an additional sub-paragraph in 14.1. with a dedicated footnote 2/.

OICA additionally proposed compliance with the requirements of a new annex 4 (see justifications to Annex 4 below).

Paragraph 16.4: performance requirements for triggering signal emission. The verification shall be performed according to the approval procedure chosen paragraph 14.1: frontal or lateral collision, or demonstration with documentation. This latter procedure should be primarily used for extensions of existing approvals and when the vehicle is already approved to the frontal/lateral impact regulations, and were fitted with an AECD prior the entry into force of this regulation.

Paragraph 16.4.4: this new provision is necessary for vehicles out of UN R94 and UN R95, but equipped with a triggering system, because they need to meet some requirements. As they are not subject to any crash test, the manufacturer must demonstrate by proper means the generation of a triggering signal for the purpose of AECS.

Paragraph 16.5: as per the re-structuration proposed by OICA, a new paragraph 16.5 is inserted with the purpose of checking the proper functioning of the AECS after crash in the proper sequence:
1. activation of automatic call and dial-up;
2. when existing, manual emergency call control operation;
3. the generation of a warning signal and the operation of the microphone; and
4. checking the correct recording, content and emission of the Minimum Set of Data (MSD).

All these performances shall be verified according to the relevant test procedures of Annex 8.

Paragraph 16.6: power supply performances assessment. Paragraph should apply only when the tests were not performed under the device section (Part I of the regulation).

Paragraph 16.6.1: when the vehicle is eligible to the test of UN R94, the assessment can be performed by a real test just after the real crash test, or a demonstration of the capacity of the power supply together with the absence of damage. “All” vehicle systems means “all systems that are expected to be powered post-crash”, in a realistic worst case scenario.

Paragraph 16.6.2: when the vehicle is eligible to the tests of UN R94 and R95, the assessment shall be performed by a demonstration of the capacity of the power supply together with the absence of damage. “All” vehicle systems means “all systems that are expected to be powered post-crash”, in a realistic worst case scenario.

Paragraph 16.6.3: when the vehicle is not eligible to the tests of UN R94 nor R95, the assessment shall be performed by a demonstration of the capacity of the power supply together with the absence of damage.

Paragraph 16.6.4: describes the conditions for the cases when the vehicle is eligible to the tests under at least one out of UN R94 and R95.

Paragraphs 17 to 20: Conventional wording per regulations under the 58 Agreement

Part III: Section still to be developed. It will be largely inspired from Part II of the regulation.

Annexes XX, YY, ZZ: AECS-07 agreed to the addition of Annexes XX, YY and ZZ as Communication Forms which permit the Type Approval authorities to communicate with each other on the approvals granted. A sub item to item 9 in Annexes XX and YY provides an entry for indicating whether the AECD approval contains assessment of the AECD information and warning signal. Should the answer be “no” in Annex XX, then the Communication form for AECS in Annex YY
should contain a “yes” to this entry, and vice-versa. Such discrimination is not necessary when the AECS is fully integrated in the vehicle (Annex ZZ).

A new entry “10” was added to Annex XX was added for addressing the AECD sled test of Annex 4.

Annexes 1 to 3: Conventional annexes per regulations under the 58 Agreement.

Annex 4: Annex dedicated to the assessment of the resistance to mechanical impact. The group agreed in principle on a sled test ensuring that AECS deliver high societal benefits to those casualties who need it most because it covers collision configurations that are more challenging to AECD than full-scale tests (UN R94 &95). The proposal is based on the decelerations a sample of full-scale crash test results of superminis, MYs 2012 and 2013 (56 km/h, rigid barrier, full-width).

Annex 5: Annex dedicated to the assessment of the navigation solution, at the request of the manufacturer. Proposal per document AECS-07-13 (GSA). GSA volunteer to update their proposal in extracting the performance requirements and placing them into the text of the regulation.

Annex 6: Annex dedicated to the assessment of the emission of an emergency call signal, and of the presence and content of the MSD. Content of Annex 6 as proposed by RUS at AECS-07. Russian Federation believes Annex 6 is required to describe methods to assess post-crash operation. Needs to be high level.

Annex 7: Could be deleted

Annex 8: OICA proposed the following at AECS-07:

- For consistency, this annex should relate to the AECS, because it addresses “the installation of an AECD” (Part II of the regulation).
- The procedure for verification of functional state of the in-vehicle system by separated functional test is described in the detailed separate appendices 1 and 2.
- Paragraph 2: Verification by simple Human Machine Interface should be sufficient if the AECD is capable of diagnosing all its components and discriminating the failures coming from the environment (e.g. network failures) from internal failures.
- Paragraph 3: verification, per post-crash memory checking, that the correct MSD and emissions to networks properly occurred. This can be permitted only if the AECD as the relevant capabilities (energy supply, self-diagnosis, event sequence memorization, etc.)
- Paragraph 4: the separate functional test of Appendix 1 should be permitted if the AECD has the capabilities of memorizing all steps of an emergency call transaction and if all the AECD components are removable for laboratory inspection.
- Paragraph 5: functional transmission test when the connectivity components are accessible for functional testing.

Appendix 1: Verification of functional state of the in-vehicle system by separated functional test: the proposed criteria and confirmation methods are elaborated keeping in view the need for practical provisions. Provisions for AECD with internal antenna must be different to those with external antenna as the latter can be accessible to the operator.

Appendix 2: Verification of functional state of the in-vehicle system by functional transmission test with wired procedure (for AECS with external antenna): these provisions are inspired from those of appendix 1, with some changes due to wire connection. This appendix indeed is restricted to AECD with external antenna.

Annex 9: Definition of the minimum set of data (MSD). As agreed at the 2nd meeting of the informal group, this dedicated annex provides the minimum requirements for the MSD, i.e. the mandatory part of CEN15722 Standard, Table 1. The annex is
limited to a list of the basic minimum data to be conveyed to PSAP; the exact format of MSD is still under the responsibility of the manufacturer, in relation with the countries were the vehicle is intended to be marketed.

Annex 10: HMI (AECD/AECS control) testing. RUS proposed at AECS-07 to add such annex.