

Experiences of airborne particulates from wear process

Ulf Olofsson

Professor in Tribology, Department of Machine Design

ulfo@kth.se

Sweden's leading university of technology

- Sweden's oldest and largest university of technology
- More than 12,000 full-time students
- More than 1,900 PhD Students
- Over 5,100 employees
- Five campuses in the Stockholm region
- Ranked as the 126th best university of technology in the world by THE

Tribology

From surface topography to system behavior

Modeling and simulation of friction and wear, with an overall perspective on the system effects of <u>emissions</u>, <u>energy efficiency</u>, <u>material hygiene</u> and <u>design</u>.

- Transmissions
- Particle emissions
- Adhesion
- Tactility
- Interface modularization
- New ionic liquids

♦Value Target Limit of Capabili **Ionic liquids** Current lubricants

Airborne particulate research – PhD student projects

- 1 PhD project particle emissions from the tail pipe
- 3 PhD projects particle emissions from disc brakes
- 2 PhD projects particle emissions from rail vehicles

Two EU projects Rebrake and Lowbrasys plus three national projects from the Swedish National Transport Agency and Stockholm public transport

transition temperatures and particle density Experimental setup

TEOM measures the mass concentration PM10 of particles smaller 10 μ m;

FMPS classifies 0.0056–0.56 µm particles in 32 stages;

OPS classifies 0.3–10 µm particles in 16 stages;

ELPI+ separates 0.006–10 µm aerodynamic diameter particles in 14 stages

Friction materials

Friction pairs corresponding to those used in passenger car brakes were investigated. The disc was cast iron. Six different materials code-named M1, ..., M6 were used as pin samples. Of these, five (M1, ..., M5) were LM with phenolic resin as a binder and different reinforcements and abrasives. M6 was an NAO. The pin samples and discs were milled from real brake pads and discs. Their sliding surfaces remained unaltered during the milling.

Friction conditions

Stationary temperature T_s

Number concentration *C* and mass concentration PM10 of airborne wear particles at low load

Number concentration *C* and mass concentration PM10 of airborne wear particles at high load

Number concentration C of airborne wear particles

Relation between the temperature T and number particle concentration C

Particle size distribution at low load

13

Particle size distribution at high load

Particle density ρ based on measurements by TEOM, OPS and FMPS

 ρ , g/cm³ 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 Coarse, fine and ultrafine particles - Eq.(1) \leftarrow TEOM, OPS and FMPS • M2 • M3 • M4 • M1 • M5 • M6 0.3 ELPI+ and FMPS Fine particles - Eq.(2) \leftarrow 0.2 ◆ M3 ◆ M4 ◆ M5 •M1 ◆M2 ELPI+ and FMPS Ultrafine particles - Eq.(3) \leftarrow 0.1 ▲ M2 ▲ M3 ▲ M4 ▲ M5 ▲ M6 ▲ M1 0 350 $T_{\rm s}$, °C 100 150 200 250 300

Relation between the particle density ρ and stationary temperature T_s

A proposed dyno-bench test cycle to study particle emissions from disc brakes

04/05/2015

Brembo - KTH

Main design aims

Control of the cleanness of the incoming air.

□ Assurance of isokinetic sampling.

Brembo - KTH

Dyno bench design

Brake assembly

Test conditions

ACQUIRED DATA:

Particulate emissions – Dekati ELPI+ (1Hz)
Pad and disc temperatures
Torque/ Pressure – Transducer (50 Hz)
Velocity / Friction coefficient – calculated

Test conditions

SEVENTH FRAMEWORK

	PROGRAMME						I & Ramon
#	Section	Initial speed [km/h]	Final speed [km/h]	Initial disc brake temperature [°C]	Braking deceleration [g]	Number of stops [N]	Number of stop in present test [#]
	5' Cleaning						
1	Burnish	50	4	100	0.25	100	50
	5' Cleaning						
2	Town block #1	50	4	150	0.25	200	20
	5' Cleaning						
3	Highway block #1	150	80	150	0.4	100	10
	5' Cleaning						
4	Country road block #1	80	4	200	0.35	200	20
	5' Cleaning						
5	Country road block #2	100	4	125	0.4	200	20
	5' Cleaning						
6	Highway block #2	180	80	100	0.5	50	5
	5' Cleaning						
7	Town block #2	50	4	150	0.25	200	20
	5' Cleaning						
8	County road block #3	100	4	125	0.4	200	20
	5' Cleaning						
9	Hill descent block	80	4	350	0.35	50	5
	5' Cleaning						

Results

SEVENTH FRAMEWORK PROGRAMME

Particle total concentration: Town block #2

Road Test: Set-up

In order to define the typical urban driving brake system parameters the reference car was equipped as follows:

- 2 k-type thermocouples each pad
- 2 k-type thermocoupes each disc
- GPS speed
- Wheel speed
- Pressure transducer

Road Test: Track

SEVENTH FRAMEWORK PROGRAMME

The defined track involved 4 phases, for a total of 74km:

- Initial system warm-up
- 1st city cicle
- System cool down phase
- 2nd city cicle

Future developement

Rank different brake materials

Calculation of emission factors

 Road tests - updated dyno cycles (transition temperatures)

Simulation models on local and global scale

REBRAKE Workshop 3: Modelling and simulation of wear and particle emissions

KTH Royal Institute of Technology, Stockholm, Sweden Department of Machine DesignMonday October 26th 2015 Contact: Anders Söderberg aes@md.kth.se

Preliminary programme

- 09:15 09:20 Welcome and opening
- 09:20 09:30 Overview of the modelling and simulation activities in REBRAKE and LOWBRASYS (Anders Söderberg, Dept. of Machine Design, KTH Royal Institute of Technology)
- 9:30 10:00 Introduction to numerical wear simulations (Anders Söderberg, Dept. of Machine Design, KTH Royal Institute of Technology)
- 10:00 10:15 Coffee break
- 10:15 11:00 Wear simulation using finite element analysis (Giorgio Valota, Brembo SpA)
- 11:00 11:45 Simulation of local contact situation using cellular automaton (Jens Wahlström, Dept. of Machine Design, KTH Royal Institute of Technology)
- 11:45 12:00 Open-discussion and closure of the morning session
- 12:00 13:15 Lunch
- 13:15 13:20 Opening of the afternoon session (Anders Söderberg, Dept. of Machine Design, KTH Royal Institute of Technology)
- 13:20 13:50 Measurement of wear and particle emissions in pin on disc tribometer (Mattia Alemani, Brembo SpA)
- 13:50 14:20 A computational fluid dynamic study of gas-particle system with the application to the laboratory tests of particle emissions (Hailong Lu, Dept. of Material Science, KTH Royal Institute of Technology)
- 14:20-14:30 Coffee break
- 14:30 15:00 Particle density estimation (Oleksii Nosko, Dept. of Machine Design, KTH Royal Institute of Technology)
- 15:00 15:30 Copper in brake materials and related environmental issues (Giovanni Straffelini, Dept. of Industrial Engineering, University of Trento)
- 15:30 16:00 Open discussion
- 16:00 Closure