

© 2014 HORIBA, Ltd. All rights reserved.

Brake Dust Project

Prof. Dr.-Ing. Klaus Augsburg, Dip.-Ing. Hannes Sachse (TU Ilmenau) Lugovyy Dmytro, Michael Wirtz, Peter Lienerth (Horiba)

Date: 2/10/15

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Developing new particle measuring principle for analysis of Brake Dust pollutions

Explore the future

Outlook

- Status of measurement procedure definition for brake particle emissions
- Emission behavior during brake event
- AK Bremsstaub and AK Master measurements
- Hose versus Sample box: Comparison of experimental results
- On-road measurements
- Results of first step
- Challenges and next steps

Explore the future

Status of measurement procedure

definition for brake particle emissions

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Background

Concern about Nano-particle

Fine particles (diameter < $2.5 \,\mu m$) may reach deep into the lung.

Measuremetns of Particle Number

Aerodynamic Particle Sizer

- Optical system with two partially overlapping laser beams to detect coincidence.
- One signal is generated with two crests
- Time between the crests provides aerodynamic particle-size information.
- Instrument does effectively limit the effect of coincidence on particle-size distributions.
- Lower detection limit 370nm

CPC

- The saturator provides saturated butanol vapor that mixes with particles in the condenser.
- Particle growth occurs in the condenser.
- The detector counts the electrical pulses generated from the light scattered by the particles.
- Lower detection limit 5-23nm

DustTruck

- Particle is illuminated by a sheet of laser light.
- Gold coated spherical mirror captures a significant fraction of the light scattered by the particles and focuses it on to a photo detector.
- The voltage across the photo detector is proportional to the mass concentration of the aerosol over a wide range of concentrations.
- Lower detection limit 100nm

HORIBA

Measuremetns of particle size distribtuion

SMPS

DMS

- Unipolar corona discharge to place a prescribed charge on each particle proportional to its surface area.
- Aerosol is introduced into a strong radial electrical field inside a classifier column.
- Particles are detected at different distances down the column, depending upon their electrical mobility.

SMPS

- In a Differential Mobility Analyzer (DMA) an electric field is created
- Airborne particles drift according to their electrical mobility.
- Particle size is then calculated from the mobility distribution

HORIBA

Automotive Test Systems

Brake dust, first approximation -PMP Protocol

Explore the future

HORIBA

Emission behavior during brake event

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Emission behavior during brake event: Particle Image Velocimetry

Prof. Dr.-Ing. Klaus Augsburg, Dip.-Ing. Hannes Sachse, TU Ilmenau

- > Laser beam will be scattered over the optic system
- Camera will be used to take pictures

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Emission behavior during brake event

Prof. Dr.-Ing. Klaus Augsburg, Dip.-Ing. Hannes Sachse, Rüdiger Horn, Sebastian Gramstat: Brake dust emission, 15th ETH-Conference on Combustion Generated Nanoparticles, June 26th – 29th 2011

- Particle Image Velocimetry (PIV) is used
- Particle emission will be recorded during brake event

Explore the future

HORIBA

Automotive Test Systems

HORIBA

Prof. Dr.-Ing. Klaus Augsburg, Hannes Sachse, Rüdiger Horn, Sebastian Gramstat: Brake dust emission, 15th ETH-Conference on Combustion Generated Nanoparticles, June 26th – 29th 2011

Particle emission after 3,2 s

Evaluation of different braking scenarios with light-section method (PIV)

- Exponential growth of particle emissions with wheel velocity
- > Area of emission plum increases with wheel velocity

Explore the future

Prof. Dr.-Ing. Klaus Augsburg, Hannes Sachse, Frederic Egenhofer, TU Ilmenau 2014

Without ventilation

Explore the future

Prof. Dr.-Ing. Klaus Augsburg, Hannes Sachse, Frederic Egenhofer, TU Ilmenau 2014

Automotive lest Systems

HORIBA

Without ventilation

Sample box versus Hose AK-Bremsstaub

- Application of sample box increase measured particle emission from 10⁴ to 10⁵ particle / cm³
- Emission measured with Hose and Sample box follow same trend

Explore the future

HORIBA

Prof. Dr.-Ing. Klaus Augsburg, Hannes Sachse, Frederic Egenhofer, TU Ilmenau 2014

With ventilation

Explore the future

© 2014 HORIBA Europe GmbH. All rights reserved.

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Prof. Dr.-Ing. Klaus Augsburg, Hannes Sachse, Frederic Egenhofer, TU Ilmenau 2014

AK-Bremstaub

- City cycle
- 🖵 0-50 km/h
- **0.25 g**
- □ 150° C
- □ 8 mm Hose
- Directly after brake caliper

HORIBA

With ventilation

Sample box versus Hose AK-Bremsstaub

- Application of sample box increase measured particle emission from 10⁴ to 10⁵ particle / cm³
- Ventilation reduce particle concentration by factor 1,3 when sample box is applied.
- For measurements with Hose total particles amount is reduced after ventilation switched on

Explore the future

AK Bremsstatub and AK Master measurements

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Properties of the Measuring Chain

- Specialized sampling box to guarantee repeatability
- Strong reduction of particle distribution caused by moving air
- □ Traps the particles for a longer time
- High basic level for HORIBA MEXA particle counting system

Explore the future

Properties of the Measuring Chain

- SPCS: HORIBA MEXA particle counting system
- Well established for emission measurements!
- PMP conform equipment
- Particles from 23...2500nm measured with 10Hz
- DMS: particle size classification system from Cambustion
- Particles from 5...1000nm measured with 10Hz

Explore the future

Scope of Investigation

- AK-Master & AK-Bremsstaub performed at TU Ilmenau and at HORIBA in Darmstadt
- □ All test parameters were synchronized
- Air flow was calibrated in both locations
- ECE brake pads from same batch

 Can the test procedures deliver the same results when performed on different dynos?

Dyno 1	Braking Torque	5.000Nm
TU	Max. Speed	02.500 rpm
Ilmenau	Inertia Range	5250kgm ²
Dyno 2	Braking Torque	6.000 Nm
HORIBA	Max. Speed	02.800 RPM
Darmstadt	Inertia Range	5320 kgm ²

Description of Test Schedule

AK-Master

- Well-known friction level test for brake dynos
- Large practical experience
- Highest load and stress for friction material

AK-Bremsstaub

- □ Block-based cycle (one braking scenario repeated for 30 or 100 times
 - in each block)
- Adaption effects of friction material which is not common in real driving
- Proven test cycle for comparing friction material with regard to wheel dust

Explore the future

First repetition of the mixed cycle (different braking scenarios) with total particle concentrations

Concentrations measured during the braking events correspond to each other (for starting temp. <150°C)</p>

Explore the future

Data Analysis – AK-Bremsstaub

But differences for braking events with starting temp. of 200° C

Explore the future

HORIBA Automotive Test Systems

AK-Bremsstaub. Particle size distrubution

- Amount and size distribution of wear debris differs significantly between both as a function of the temperature
- The particle distribution was measured by the DMS

➢ Origin of ultra-fine particle ≤ 20nm has to be defined

Explore the future

Automotive Test Systems

Explore the future

HORIBA

HORIBA

Automotive Test Systems

Explore the future

HORIBA

HORIBA

Automotive Test Systems

Explore the future

HORIBA

HORIBA

Automotive Test Systems

Explore the future

HORIBA

HORIBA

Automotive Test Systems

Explore the future

HORIBA

HORIBA

Automotive Test Systems

good reproducibility

Explore the future

HORIBA

Total emission changes with increasing pressure

Particle size distribution changes with increasing pressure

Explore the future

- Total emission changes with increasing pressure
- Particle size distribution changes with increasing pressure

Explore the future

HORIBA

Automotive Test Systems

➢ Formation of ultrafine particles ≤ 20nm is observed

➤ Amount of ultrafine particles ≤ 20nm exceed the amount of 100nm

particles

Explore the future

HORIBA

Automotive Test Systems

Size distribution is dominated by ultrafine particles ≤ 20nm

Explore the future

HORIBA

Automotive Test Systems

Increasing brake pressure enhance formation of ultra-fine particles

No clear dependence of brake pressure on particle emission as well as size distribution was found.

Explore the future

Total emission increases with a rising temperature

Particle size distribution changes with a rising temperature

Explore the future

Size distribution is dominated by 100nm and 200nm particles

Explore the future

- ➤ Formation of ultrafine particles ≤ 20nm is observed
- ➤ Ultrafine particles ≤ 20nm exceed the amount of 100nm particles

Explore the future

HORIBA

HORIBA

Automotive Test Systems

- ➤ Formation of ultrafine particles ≤ 20nm is observed
- ➤ Ultrafine particles ≤ 20nm exceed the amount of 100nm particles

Explore the future

HORIBA

Automotive Test Systems

HORIBA

- Total emission increases with rising temperatures
- Rising temperatures enhance formation of ultra-fine particles
- ➢ At temperatures ≥ 478° C size distribution is dominated by ultrafine

particles ≤ 20nm

© 2014 HORIBA Europe GmbH. All rights reserved.

Explore the future

AK-Master. Particle size distribution. Wheel speed

Appearance of ultra-fine particle depends on wheel speed rather than on brake pressure

Increasing wheel speed enhances formation of ultra-fine particles at lower brake pressure

Total particle emission increases with increasing wheel speeds

Explore the future

HORIBA

Automotive Test Systems

Results – AK Master

- The highest fault coefficient is 1.7 when the dynamometers are working equally.
- A comparison of particle measurements performed on two different dynamometers is possible!
- □ Increasing brake pressure enhance formation of ultra-fine particles.
- □ Total emission increases with increasing temperature.
- □ At temperatures higher ≥ 478° C size distribution is dominated by ultrafine particles ≤ 20nm.
- Increasing wheel speed enhance formation of ultra-fine particles at lower brake pressure.

Explore the future

Hose versus Sample box: Comparison of

experimental results

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Course of brake event can be analyzed

Allow to see fine off-brake emission peaks

Explore the future

Application of sample box

- Course of brake event can be analyzed
- Allow to see fine off-brake emission peaks

Explore the future

HORIBA

Automotive Test Systems

AK-Master. Particle size distribution. Hose *versus* sample box

HORIBA

- Reduce background
- Allow to see fine emission peaks

Explore the future

© 2014 HORIBA Europe GmbH. All rights reserved.

PMP35

No. of Brake Appl

AK-Master. Particle size distribution. Hose *versus* sample box

HORIBA

PMP35

Allow to see fine emission peaks

Explore the future

AK-Master. Particle size distribution. Hose versus sample box

dN/dlo

Allow to see fine off-brake emission peaks

HORIBA

Conclusions

- Particle emission values were found in the same range with a deviation coefficient of 1.7 for AK Master for same tests at two different dynos.
- No clear dependence brake pressure on particle emission as well as size distribution was found
- Increasing temperature enhance formation of ultra-fine particles
- Appearance of ultra-fine particle depends on wheel speed rather than on brake pressure

On-road-brake-events

- > TSI Dusttrak system installed on a light duty vehicle
- Sampling point behind the brake calliper to minimize effects from other particle sources
- > A pressure sensor in the brake hydraulic is necessary
- Only from 750 seconds on, there is a verified correlation between

particle emission and brake events.

Explore the future

HORIBA

Results of first step

- Exiting sampling set-up provide good reproducibility for particle emission measurements
- Exiting sampling set-up can be installed at every brake dynamometer without their modification
- Splitter provide homogeneous distribution of aerosol flow for 2 used instruments and can be used in future
- □ Particle emission was measured in range 1x10⁵-10⁸ particle/cm³
- Particle emission depends on disk temperature, wheel velocity and less on applied pressure
- Particle emission recorded during one single brake event demonstrate a few characteristic peaks at different time points
- □ Application of sample box allow to investigate course of single brake event
- □ Particle size distribution depends on disk temperature
- □ For high disk temperature T≥180° C big amount of ultrafine particles 5-20 nm was recorded with DMS
- □ Results of real drive emission tests are affected by many sources of particles

Explore the future

Challenges

- Disagreement in total concentration measured with SPCS and DMS for some test sections
- □ Big amount of ultrafine 5-20nm can not be measured with SPCS
- Data evaluation for particle emission measurement required synchronization and additional data evaluation from brake dynamometer
- □ Improving of sampling system
- □ Test procedure not defined yet
- □ Role of test parameters

Explore the future

To be solved

Explore the future

To be solved by Brake Dust Project

- Building up new measurements set-up
- Investigation of chemical and physical properties of brake dust particles
- Definition of test procedure
- Role of test parameters and modification of sampling system

Measurements equipment

Test S procedure p

Sampling procedure

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Thank you

1000

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific