

INVESTIGATION OF NON-EXHAUST PARTICLE EMISSIONS UNDER REAL WORLD CONDITIONS FROM A LIGHT DUTY VEHICLE

MARCEL MATHISSEN 08.10.2015

OUTLINE

- Introduction
- Potential occurrence of ultrafine particles from the tire/road interface
 Mathissen, Marcel, et al. "Investigation on the potential generation of ultrafine particles from the tire-road interface."
 Atmospheric Environment 45.34 (2011): 6172-6179.
- Trailer based measurement method to estimate resuspended road dust emissions
 Mathissen, Marcel, et al. "Non-exhaust PM emission measurements of a light duty vehicle with a mobile trailer."
 Atmospheric Environment 59 (2012): 232-242.
- Summary

NON-EXHAUST PARTICLE EMISSIONS

- The German Federal Environmental Agency expect an increasing share of PM10 non-exhaust emissions to the Transport sector for Germany from 58% to 93% (2005-2030). Similarly for PM2.5 from 24% to 74% (2005-2030).
- However, in case of Resuspension: Little knowledge for Central European conditions
- How can we quantify fugitive emission under real world conditions directly at the vehicle?

ULTRAFINE PARTICLES - MOTIVATION

- Dahl et al. (2006) studied particle emissions from the road-tire interface on a road simulator.
- Reported particle emission factors between 4x10¹¹ 3x10¹² #/vkm at 50 and 70 km/h (comparable to exhaust particle number emissions post particulate Filter).
- Mean particle diameter between 15-50 nm depending on tire type.
- A newer study (Sjödin, 2010) found no ultrafine particles for unstudded tires.

Dahl et al. - Atmospheric Environment 40 (2006) 1314–1323

EXPERIMENTAL SETUP

- Measurement of particle size distribution with TSI EEPS (5.6 nm 562.3 nm)
- NDIR CO₂-Measurement
- GPS data via Racelogic VBOX
- Up to 10 Hz Resolution

05/10/2015

- 4 Measurement positions in wheel housing
- 1 Measurement position in driving direction in front of the car
- 1 Measurement position near brake disc + Pyrometer (IR-Temp)

TEST PROGRAM

Steady (straight) driving:

for 4 different velocities: 50, 70, 100 & 120 km/h

Cornering (circle diameter ca. 48 m)

- at constant velocity: 30 km/h (a_{lateral}=2.9 ms⁻²), 40 km/h (a_{lateral}=5.1 ms⁻²))
- with increasing velocity until activation of stability control

Acceleration

- Normal accelerations (up to 2.4 m/s²)
- "Racing start" (Activation of traction control)

Braking

- Normal Braking
- Full Stop Braking for different starting velocities → Activation of ABS (a_{Brake} = 9 ms⁻²)

RESULTS – STEADY (STRAIGHT) DRIVING

- Particle concentration in the order of 3 5 x 10³ #/cm³ (background-level)
- No particle concentration enhancement measurable while driving

RESULTS – TRACER GAS EXPERIMENT

- Tracer (10% NO in N₂) released in Front of / behind the Tire
- Estimated EF is based on the average of these measurements

EMISSION FACTOR STEADY STRAIGHT DRIVING

- Assumption: Equal emissions for all four tires
- Estimated maximal EF: < 1x10¹¹ #/vkm (30 times smaller than reported by Dahl *et al.*)

NORMAL CORNERING / EXTREME CORNERING

- No enhanced concentrations for normal cornering
- Extreme cornering: Screeching tires and activation of stability control.
- Tire slip results in enhanced particle concentrations up to 3.5x10⁶ #/cm³.
- No enhanced particle concentrations for normal accelerations
- Enhanced particle concentrations measurable for racing start maneuvers

NORMAL BRAKING / FULL STOP BRAKING

- No enhanced ultrafine particle concentrations for normal braking
- Harsh braking maneuvers result in particle formation
- Different particle size distribution for 100 km/h and 30 km/h full stop braking.

SIZE DISTRIBUTIONS

FROM THE SMALL TO THE LARGE

Particles due to resuspension are generally found in the coarse mode

New measurement setup needed!

MEASUREMENT SETUP

Estimation of total non-exhaust emissions:

$$E = \sum_t c_{Av} \cdot A \cdot V_{vehicle}$$

Characterization of particle dispersion in vehicle wake needed

VEHICLE WAKE CHARACTERIZATION

- Isoaxial alignment of measurement device
- Investigations on optimal measurement position in vehicle wake
- Tracer gas experiment for emission factor estimation

UNPAVED ROADS

- Average emission factor at 30 km/h:
 24000 mg/vkm ± 19000 mg/vkm PM₁₀
- Emission factor clearly velocity dependent
- No further investigations after DustTrak contamination

AGRICULTURAL PAVED ROADS

- Average emission factor for 30 km/h (PM $_{10}$): 155 mg/vkm \pm 53 mg/vkm
- Each measurement will change the emission potential of a road

PAVED ROADS – SPATIALLY RESOLVED EMISSIONS

• High local variability of emission potential:

10 % of a real world measurement is responsible for 63 % of the total emissions

■ Repeatability (covariance): 10-30 %

$$Cov = \frac{\sigma}{\mu} \cdot 100\%$$

Lowest emission on the autobahn

05/10/2015

PAVED ROADS – EMISSION FACTOR

■ Average PM₁₀ emission factor: 26 mg/vkm ± 18 mg/vkm

■ Euro 5 PM₁₀ limit for diesel cars: 4.5 mg/km

SUMMARY

- Experimental setup capable of measuring non-exhaust particle emissions under real world conditions.
- Estimation of emission factors based on tracer gas dispersion measurements

UF particles from the Tire/road interface:

- Under normal driving conditions no substantial ultrafine particle concentration enhancement measurable.
- Upper limit of emission factor for steady straight driving estimated to be < 1x10¹¹ #/km
- Under extreme conditions only (full stop braking, extreme cornering, racing start) ultrafine particles measurable with mean particle sizes between 30 nm - 80 nm.
- Particle formation related to significant tire slip.

Resuspension of road dust:

- Diffuser inlet to sample isokinetically; Characterization of vehicle wake
- Estimated emission factors:
 - Unpaved roads (30km/h): 24000 mg /vkm ± 19000 mg/vkm
 - Agricultural paved roads (30km/h): 155 mg/vkm ± 53 mg/vkm
 - Real world roads: 26 mg/vkm ± 18 mg/vkm
- High local variability of emission potential.

Thank you for you kind attention!

- Investigation on the potential generation of ultrafine particles from the tire—road interface. Atmospheric Environment Vol. 45, 2011, pp. 6172–6179
- Non-exhaust PM emission measurements of a light duty vehicle with a mobile trailer.
 Atmospheric Environment Vol. 59, 2012, pp. 232–242

VEHICLE BASED DIRECT MEASUREMENTS

ISOKINETIC SAMPLING

Super-isokinetic sampling (U>U₀)

Sub-isokinetic sampling (U<U₀)

- Isokinetic (isoaxial) sampling
 - ► Representative sampling

MEASURING LOCATION - LOMMEL PROVING GROUND

WIND TUNNEL TEST - VEHICLE WAKE

- Isoaxial alignment of measurement device
- Investigations on optimal measurement position in vehicle wake

TRACER GAS EXPERIMENT

Wake characterization:

- Release of tracer gas (10% NO in N₂) at 6 different probes
- Assumption: Particles and tracer gas are dispersed equally

TRACER GAS EXPERIMENT - RESULT

- 2 Velocities (30 km/h, 100 km/h)
- 3 Repetitons
- 6 different tracer gas release points
- 22 measurement points
- + partial wake characterization for longer vehicle-trailer distance
- Further characterization: Local wind speed

