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ABSTRACT: We characterize regionally specific life cycle CO2
emissions per mile traveled for plug-in hybrid electric vehicles
(PHEVs) and battery electric vehicles (BEVs) across the United
States under alternative assumptions for regional electricity emission
factors, regional boundaries, and charging schemes. We find that
estimates based on marginal vs average grid emission factors differ by
as much as 50% (using National Electricity Reliability Commission
(NERC) regional boundaries). Use of state boundaries versus NERC
region boundaries results in estimates that differ by as much as 120%
for the same location (using average emission factors). We argue that
consumption-based marginal emission factors are conceptually
appropriate for evaluating the emissions implications of policies that
increase electric vehicle sales or use in a region. We also examine
generation-based marginal emission factors to assess robustness. Using these two estimates of NERC region marginal emission
factors, we find the following: (1) delayed charging (i.e., starting at midnight) leads to higher emissions in most cases due largely
to increased coal in the marginal generation mix at night; (2) the Chevrolet Volt has higher expected life cycle emissions than the
Toyota Prius hybrid electric vehicle (the most efficient U.S. gasoline vehicle) across the U.S. in nearly all scenarios; (3) the
Nissan Leaf BEV has lower life cycle emissions than the Prius in the western U.S. and in Texas, but the Prius has lower emissions
in the northern Midwest regardless of assumed charging scheme and marginal emissions estimation method; (4) in other regions
the lowest emitting vehicle depends on charge timing and emission factor estimation assumptions.

1. INTRODUCTION

To address climate change, move toward more sustainable
energy systems, and improve the security of energy supply, new
technologies and strategies are needed in the transportation
sector. In the United States, transportation accounted for about
28% of U.S. greenhouse gas (GHG) emissions1 and about 28%
of total U.S. primary energy consumption2 in 2012. Vehicle
electrification has been proposed as a way to reduce emissions,
and much attention has been paid to comparisons of life cycle
GHG emissions between plug-in electric vehicles (PEVs) and
gasoline vehicles in the United States4−18,20,21 as well as in
Europe6,22−26 and Asia.27−29

Most studies indicate that the key factor when comparing
PEVs and gasoline vehicles is the magnitude of emissions
associated with electricity production. However, many of these
studies rely on a single electricity production emission factor
estimate or conduct sensitivity analyses on grid emission factors
over a range of power plant types. A more detailed assessment
is needed to estimate regionally specific emissions from those
power plants that respond to PEV charging.

In Table 1 we summarize recent studies that have focused on
a regional comparative analysis of electric and gasoline vehicle
CO2 emissions in the U.S. For illustrative purposes, in the
Supporting Information (SI) we provide a set of maps that
highlight differences in two of these analyses. These studies
vary in life cycle scope, vehicle assumptions, regional
boundaries, and grid emission factors. In particular, variation
in grid emission factors and regional boundaries are key drivers
of differences in the estimates of regional PEV benefits.
We examine how the regional variation in emissions from

electrified vehicles differ depending on the assumptions
regarding (a) whether marginal emission factors (MEFs) or
average emission factors (AEFs) for electricity production are
used, (b) whether generation- or consumption-based emission
factors are used, (c) regional boundaries of analysis, and (d)
charging time. Marginal emission factors represent the emission
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rates associated with the power plant(s) that would increase
generation in response to new load at a particular time and
location. Identifying which plants respond on the margin is
difficult in practice because the electricity grid is a highly
interconnected network, moving supply from geographically
diverse generators to geographically diverse demand locations
within and between regions dynamically, while responding to
economic signals and technical factors such as ramp rates,
downtime, frequency regulation, and transmission constraints.
It is therefore difficult in practice to know precisely which
power plant(s) will ramp up production in response to a new
load at a given time and location.

Given this difficulty, several studies of regional PEV
emissions employ readily available estimates of average regional
generation mix instead, as shown in Table 1. For example,
Anair and Mahmassani5 use average generation emissions
within each eGRID subregion, and Yawitz et al.4 use average
generation emissions within each state. Weber et al.19

emphasize that regional emissions differ substantially under
alternative definitions of regional boundaries, accounting for
some of the differences between the two studies. Regardless,
with any regional definition, average emission rates in a region
vary substantially from the change in emissions that a new load
will create for two reasons: (1) many baseload plants and
nondispatchable renewable generators, which make up a

Table 1. Summary of Recent Studies Focusing on Comparative Regional Analysis of Greenhouse Gas Emissions of Electric and
Gasoline Vehicles in the U.S.a

Graff Zivin et al. (2014)3 Yawitz et al. (2013)4 Anair and Mahmassani (2012)5 EPRI-NRDC (2007)15

institution(s) UCSD, Yale, Dartmouth, NBER Climate Central Union of Concerned Scientists EPRI and NRDC

publication
type

peer-reviewed journal paper report report report

regional defini-
tion used

8 NERC regions 50 states 26 eGRID subregions 13 NERC subregions

gasoline or hy-
brid vehicles
considered

avg gasoline (21.7 mpg); avg compara-
ble economy car (31 mpg); 2012
Toyota Prius Hybrid (50 mpg)

Toyota Prius Hybrid (50 mpg); avg
new gasoline cars (25 mpg); other
gasoline cars in market

Toyota Prius Hybrid (50 mpg); avg
new gasoline vehicle (27 mpg);
other gasoline cars in market
(EPA 2012 combined city/high-
way)

avg 2010 ICEV: 24.6 mpg avg 2010
HEV: 37.9 mpg

VMT 35 mi/day 50 000 and 100 000 mile/vehicle 166 000 mi/vehicle 12 000 mi/yr

scope of CO2
emissions
covered

gasoline combustion; production of
electricity

well-to-wheels (WTW) for gasoline;
upstream and production for elec-
tricity; life cycle

WTW for gasoline; upstream and
production for electricity

WTW for gasoline; upstream and
production for electricity

years 2007 to 2009 2010, 2012 2009 2010 to 2050

data sources CEMS, EPA EIA, GREET 2009 eGRID, GREET NEMS, MOBILE6

electricity
emission fac-
tors

marginal regional consumption average regional generation avg regional generation covering
transmission and upstream loss
(286−983 g CO2 e/kWh)

regional bottom-up model (573 g
CO2 e/kWh in 2010; 97−412 g
CO2 e/kWh in 2050)

electric ve-
hicles con-
sidered

2012 Nissan Leaf (0.34 kWh/mi) and
2012 Chevrolet Volt (0.36 kWh/mi)

2013 Nissan Leaf (0.29 kWh/mi);
other PEVs in the market

2012 Nissan Leaf (0.34 kWh/mi);
Mitsubishi “i” (0.3 kWh/mi);
Chevrolet Volt (0.36 kWh/mi, 37
mpg)

2010 PHEV (10, 20, 40): (0.312
kWh/mi, 37.9 mpg)

electric vehicle
utility factor

not stated PHEV: 0.5 Chevrolet Volt: 0.64 PHEV10:0.12, PHEV20:0.49,
PHEV40:0.66

gasoline emis-
sion factors

8.9 kg CO2/mi 11.8 kg CO2 e/gal 11.2 kg CO2 e/gal 11.1 CO2 e/gal

key findings PEV (Chevrolet Volt) is lower emitting
only in WECC and Texas and higher
emitting than the Toyota Prius in
MRO. PEVs have higher CO2
emissions when charged from mid-
night to 5 am

the HEV (Toyota Prius) has lower
CO2 emissions than the BEV
(Honda Fit) in 39 states over the
first 50 000 miles; over 100 000
miles, the BEV is better in ID, OR,
VT, and WA

the BEV (Nissan Leaf) is lower
emitting than the average gasoline
vehicle throughout the U.S.; the
PEV is lower emitting than the
Prius in about half of populated
America

in low to high GHG grid mix and
market penetration levels, PHEVs
have lower CO2 emissions than
both hybrid (by 7−46%) and
conventional gasoline vehicles (by
40−605%)

aICEV: internal combustion engine vehicle; HEV: hybrid electric vehicle; PHEV: plug-in hybrid electric vehicle; BEV: battery electric vehicle.

Figure 1. Conceptual illustration of emissions associated with average generation, marginal generation, and marginal consumption.
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substantial portion of average generation, will not change
output in response to new load, and (2) electricity is traded
across regional boundaries, so the profile of emissions produced
in a region is not necessarily a good measure of the emissions
produced to satisfy demand in that region.
Figure 1 illustrates these issues. This simplified example

includes two regions, each with generators that produce enough
supply to satisfy the baseload demand. In region 1 the nuclear
generator is fully utilized and the coal generator is partly
utilized to satisfy baseload demand. If new PEV load were
added in this region, the coal generator would increase
production to satisfy the new load. While average generation
in this region is a mix of nuclear and coal power sources, the
marginal generation associated with supplying new PEV load is
100% coal.
Region 2 has only a nuclear generator that is fully utilized in

supplying the baseload demand, so any new PEV load would
need to be satisfied by importing electricity from a neighboring
region. While region 2’s average generation emission factor
would be near zero (100% nuclear), marginal emissions
associated with supply for new PEV load in the region are
those associated with coal generation from the neighboring
region. This situation would change over time, depending on
demand and supply of electricity generating units. These
examples show why emissions associated with marginal
consumption in a region may differ substantially from emissions
associated with average generation in that region.
There are two broad approaches to estimating marginal

consumption emission factors: bottom up and top down. A
bottom up approach models power plant operations and
computes how generators should normatively behave in
response to a load profile to minimize cost. Such studies can
range from simple dispatch supply curves to detailed simulation
or optimization models to model generator response to load
profiles.9,10,12,20,23,24,58 Such models allow one to model future
grid scenarios or large load changes beyond the margin.
However, it is difficult to correctly model all of the factors that
determine plant behavior in practice (e.g., transmission
constraints, ramping constraints, unscheduled maintenance,
weather, regulation, contracts, etc.) for a region large enough to
capture all relevant factors in such an interconnected system.
Furthermore, such modeling approaches generally entail a gap
between model predictions and plant operation in practice.
Finally, such models are typically developed for one region or
interconnect and do not allow for systematic regional
comparisons across the United States.
The top-down approach applies regression models using

observed data to assess how generation and/or emissions
change as a function of changes in load in practice. For
example, Graff Zivin et al.3 regress emissions in each
interconnect (Eastern Interconnect, Western Interconnect,
and ERCOT) as a function of load in each NERC region for
each hour of the day and for multiple seasons. The authors
show that the MRO, NPCC, FRCC, WECC, and TRE NERC
regions consume more than they produce, while SERC, RFC,
and SPP have been net exporters (we define these regions later
and provide maps in the SI). This approach has the advantages
of accounting for trade across NERC region boundaries and
avoiding error in estimating the portion of power generated by
each plant that is not sold (e.g., used on site) as well as regional
variation in transmission losses. However, using these estimates
for prediction risks error from use of noncausal correlations in
counterfactual scenarios: The regression captures all changes in

generation that co-occur with changes in load, including some
nondispatchable renewable units (wind and solar generators),
which generally produce the same net output regardless of
demand fluctuations, and some buffered renewable units
(hydroelectric generators), which can make limited shifts of
generation timing in response to changes in load but generally
produce the same total output regardless of marginal changes in
load. These factors may introduce error in the marginal
consumption emission factor estimates by attributing marginal
generation to units that would not in practice change net
generation in response to new load.
Siler-Evans et al.30 mitigates this issue by considering only

fossil fuel generators (≥25 MW) as marginal generators. The
authors rely on the Continuous Emissions Monitoring System
(CEMS) from the Environmental Protection Agency and
regress change in hourly CO2 emissions as a function of change
hourly fossil generation for each hour and season in each
NERC region. The focus is on marginal generation rather than
marginal consumption (i.e., plants within the region that
respond as regional generation changes, rather than plants
across regions that respond as regional consumption changes).
The emission factors from Siler-Evans et al.30 have been
estimated for different regional boundaries (NERC and eGRID;
see SI for maps). However, those estimates do not account for
trade between regions or different transmission losses
associated with marginal load in each region. These marginal
emissions estimates have been used to assess emissions
implications of increasing wind and solar generation,59 bulk
energy storage,31 lighting systems,30,32 and building distributed
energy resources,33 among others. Other marginal emission
factor estimates exist but with limited geographic scope
(California34 and New England35−37) or for regions outside
the U.S. (U.K.38).
In summary, to properly assess the CO2 emissions

implications of adding new PEV charging demand in a
particular region, one should estimate and use marginal
consumption emission factors. Graff Zivin et al.3 attempt to
do this directly for each interconnect, with some potential for
error due to renewable generators, and Siler-Evans et al.30 avoid
renewable generators but focus on marginal generation rather
than marginal consumption, ignoring interregional trade and
regional variation in transmission losses. Both estimates suggest
significant differences between marginal and average emission
factors in a region. Both estimates have potential sources of
error, and we apply both to assess robustness of findings and
compare to implications of prior studies that use average
generation emission factors. In this work, we assess regional
variation in electric and conventional vehicle CO2 emissions
under a range of assumptions for regional boundaries of
analysis, electricity emission factors, and charging patterns.

2. DATA AND METHODS
Because we focus on comparative life cycle assessment, we
include only components of the vehicle life cycle that differ
across vehicle types. These include vehicle emissions associated
with parts assembly and manufacturing, lithium-ion battery
emissions associated with manufacturing (we excluded lead-
acid batteries, which are present in all of the examined
powertrains), emissions associated with producing, trans-
porting, and combusting gasoline, and emissions associated
with producing, transmitting, and distributing electricity. These
components represent the overwhelming majority of life cycle
vehicle CO2 emissions. We focus here on our method for
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estimating vehicle operation emissions, using a functional unit
of vehicle miles traveled. For other life cycle stages, we use data
from published sources identified in the SI. Additional details
regarding the assumptions and respective data sources are also
provided in the SI. Figure 2 illustrates the framework we use in
estimating and comparing vehicle emissions showing different
vehicle types and data sources for key parameters under each
life cycle module.
2.1. Vehicles Considered and Key Vehicle Parameters.

We use selected representative vehicles for the analysis. For
PEVs, we focus on the Nissan Leaf (BEV) and Chevrolet Volt
(PHEV). These vehicles are the highest selling in their
categories as of 2013, constituting 23% and 12% of all 2013
PEV sales, respectively. They have also been in the market the

longest.48 The Nissan Leaf also has the highest electric-mode
energy efficiency among PEVs in the market, at 0.29 kWh/mi.39

We compare these vehicles with the Toyota Prius HEV, the
most efficient gasoline vehicle (at 50 mpg) and highest selling
HEV (constituting more than 40% of 2013 HEV sales).48 We
also compare the PEVs to the 2013 sales-weighted average new
car with fuel economy of 24.6 mpg.49 Relevant vehicle
parameters such as all-electric range (AER) and energy use as
well as battery charge acceptance rate and capacity are
summarized in the SI.

2.2. Assumptions Regarding Vehicle Miles Traveled.
We assume lifetime vehicle miles traveled ranges from 100k to
150k miles with a best estimate of 125k miles used for the base
case analysis using estimates of battery and vehicle lifetime from

Figure 2. Vehicle life cycle emissions framework and data sources.

Figure 3. Empirical cumulative distribution function of daily vehicle miles traveled. Data source is ref 50.
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various sources as summarized in the SI. In practice, vehicle and
battery lifetime depend on several factors such as use intensity,
operating temperature conditions, and charging frequency.9

We obtain daily vehicle miles traveled (DVMT) from the
National Household Travel Survey (NHTS) 2009 data set.50

These data are obtained through a sample of 26 000 households
throughout the U.S. who were surveyed between March 2008
and May 2009. We extract the DVMTs for over 76 800
automobile entries and treat the full set of entries as being
representative of driving in all locations (i.e., we ignore regional
differences in driving patterns). In Figure 3, we provide an
empirical cumulative probability distribution (ECDF) and the
all electric range (AER) of the electric vehicles considered. The
NHTS DVMT data set has an average of 34.5 mi with a 5th and
95th percentile of 2.6 and 104 mi, respectively, among
automobiles that traveled on the day surveyed. As shown,
about 93% of the data have DVMT less than or equal to the
Nissan Leaf AER (∼84 mi). Vehicles with zero travel were
excluded.
2.3. Use Phase Emissions: Emissions of CO2 per Mile

Driven for Different Vehicles. The use-phase CO2 emissions
per vehicle mile traveled, Υ̂jrv, (g CO2 per mile) of vehicle type
v using emission factors data set j in region r is computed as a
function of vehicle efficiency, emission factors for gasoline and
electricity, and the distance traveled on gasoline versus
electricity (eq 1):

Average Vehicle Emissions

Υ̂ =
∑ + −

∑

η η

Φ̂ Φ̂
_⎛

⎝⎜
⎞
⎠⎟d d d

d

( )

jrv

i iv i iv

i i

ELEC ELECijrv

v v

W ELEC

ELEC

GAS

GAS

(1)

where Φ̂ijrv
W_ELEC [in g CO2/kWh] is the hourly weighted

electricity emission factors for NHTS vehicle travel entry i
under vehicle type v using an electricity emission factors j in
region r, Φ̂GAS [in g CO2/gal] is the emission factors for
gasoline, di is the distance traveled by vehicle entry i, div

ELEC is
the distance [in miles] that vehicle entry i under vehicle type v
travels using electric power, ηv

ELEC is the energy efficiency of
vehicle v when driving on electricity [in mi/kWh], ηv

GAS is the
fuel efficiency of vehicle v when driving on gasoline [in miles
per gallon], and the ∧ symbol is used to indicate a random
variable. For gasoline vehicles div

ELEC = 0 ∀ v.
Miles traveled on electricity, div

ELEC, for vehicle entry i of
vehicle type v depends on the distance traveled and the
vehicle’s AER:

Miles Traveled on Electricity

=
≥

<⎪
⎪⎧⎨
⎩

d
d d d

d d d
iv

i v v

i v i

ELEC
AER AER

AER
(2)

where dv
AER is the AER for vehicle type v and di is the DVMT

for vehicle entry i.
2.4. Electricity CO2 Emission Factors. We consider

several emission factor estimates for electricity and discuss how
these assumptions affect our results. These are as follows: (1)
hourly consumption-based MEFs adapted from Graff Zivin et
al.;3 (2) hourly generation-based marginal emission factors
(MEF) from Siler-Evans et al.;30 (3) 2009 NERC regional
average annual emission factors (AEF); (4) 2009 eGRID
subregion average emission factors (eGRID subregions are
subsets of NERC regions,47 and details are provided in the SI);

(5) 2009 state average emission factors. We obtain all AEFs
from EPA data47 and aggregate at the needed regional
boundary levels (see Table 2).

We emphasize that AEFs are conceptually inappropriate for
assessing the implications of new PEV adoption and use, but we
include AEF scenarios for comparison due to their common use
in the literature. We also emphasize that, while consumption-
based MEFs are the conceptually appropriate estimates, we
compare generation-based MEFs because of the potential
sources of error in estimating causal relationships using the
consumption-based MEF estimation approach, as described
previously.
NERC has defined eight regional entities that are responsible

to manage reliability of the U.S. bulk power system. These
entities are Florida Reliability Coordinating Council (FRCC),
Midwest Reliability Organization (MRO), Northeast Power
Coordinating Council (NPCC), ReliabilityFirst (RF), SERC
Reliability Corporation (SERC), Southwest Power Pool (SPP),
Texas Reliability Entity (TRE), and the Western Electricity
Coordinating Council (WECC). These eight regional entities
are further divided into subregions (see NERC subregion map
in the SI), and regional boundaries of these subregions have
changed and will continue to change over time to
accommodate changes in resource and reliability planning.
Another regional boundary to consider is provided by the
Environmental Protection Agency (EPA) in what is called the
eGRID subregions. These regions have been defined by the
EPA for analysis of environmental aspects of power generation,
as state boundaries frequently do not correspond to meaningful
partitioning of the power grid. The amount of trade among
regions depends on the regional boundaries used (e.g., state,
eGRID, or NERC), but average interregional trade is not
necessarily a good indicator of marginal trade, so it is not
known which regional definitions induce greater error to
marginal emissions estimates when ignoring trade.
We provide maps of NERC and eGRID regions as well as a

comparison of the electricity emission factors by time of day
and for each NERC region in the SI. Figure S4 in the SI
highlights that, for most regions, MEFs are lower than AEFs
during peak load times, where natural gas is often the fuel used
at the margin.30 Also, hourly estimates for the consumption-
based MEFs3 vary more by hour and have wider statistical
uncertainty ranges from the regressions, especially for the
regions within the eastern interconnect, than the generation-
based MEFs.30

Discrepancies between generation- and consumption-based
MEF values are small in the WECC and TRE regions where
trading with other regions is limited. In MRO, consumption-
based values are much higher than generation-based values (by

Table 2. Summary of Scenarios Considered

scenario

MEF
versus AEF

for
electricity

consumption
versus

generation
MEFs region

MEF/
AEF
ref

source
charging
scheme

1 MEF consumption NERC 3 convenience
2 MEF consumption NERC 3 delayed
3 MEF generation NERC 30 convenience
4 MEF generation NERC 30 delayed
5 AEF generation NERC 47 NA
6 AEF generation eGRID 47 NA
7 AEF generation state 47 NA
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up to 66%) even though MRO is a net importer from regions
that are less carbon-intensive. A potential explanation is that the
majority of the energy that MRO imports is supplied by coal
power plants in neighboring regions.3 Table 2 highlights key
differences in the different emission factors used.
Using the MEFs, we compute the hourly weighted MEFs

(WMEF) for both convenience- and delayed-charging. The
WMEF takes into account the time of the day and the duration
that an PEV is charged. To determine the WMEFs, Φijrv

W_ELEC,
we performed a Monte Carlo simulation (N = 10 000) using eq
3 and the marginal emission factor distribution summarized in
the SI:

Weighted Marginal Emission Factors

Φ̂ =
∑ Φ̂_ h

tijrv
t tiv tjr

iv

W ELEC
ELEC

CHG
(3)

where htiv is the fraction of hour t that vehicle entry i of vehicle
type v charges, Φ̂tjr

ELEC is the MEF for hour t, region r, using
MEF data source j, including both direct and upstream
emissions, and tiv

CHG is the total charge time for vehicle entry
i under vehicle type v.
Both sets of MEFs estimate CO2 emissions during power

plant operation. To estimate upstream emissions, we
extrapolate hourly marginal grid mix from Siler-Evans et al.30

and used associated upstream emission rates from Argonne
National Laboratory44 and Venkatesh et al.46 Marginal grid mix
was not available for consumption-based MEFs, so we estimate
upstream emissions using generation-based marginal grid mix.
We provide details of this calculation in the SI.
2.5. Charging Schemes and Charge Times. The vehicle

charge time, tiv
CHG, for vehicle type v if it were to travel the same

distance as vehicle entry i, is given by eq 4:

Vehicle Charge Time

=
≥

<

⎧
⎨⎪

⎩⎪
t

d d t

d d
d

d
tiv

i v v

i v
i

v
v

CHG

AER CHG

AER
AER

CHG

(4)

where tv
CHG is the time it takes to fully recharge vehicle type v,

assuming combined (45% city, 55% highway) vehicle fuel
efficiency.39

We consider two charging schemes: convenience and delayed
charging. Under the convenience-charging scheme, we assume
that vehicles start charging upon arrival to the home after the

last trip of the day. We obtain data on arrival time ti
E for each

vehicle entry i from the NHTS data50 and compute the fraction
of time htiv spent charging in each hour t ∈ {0,1,2,...,23} using
eq 5:

Charge Time Fraction per Hour (convenience charging)

∑=

≤ + ≥ +

≥ + + ≤

+ + −τ τ
=

⎧

⎨
⎪⎪

⎩
⎪⎪

h

t t t t t

t t t t t

t t t t t

1 if and 1

0 if 1 or

min( 1, ) max( , )
otherwise

tiv
n

i n i iv n

i n i iv

n iv n
0

1

E E CHG

E E CHG

E CHG E

(5)

where tn = t + 24n to account for charging that takes place the
day following a trip. For the delayed charging scenario, we
assume that the vehicles start charging at 12 am, so that

Charge Time Fraction per Hour (delayed charging)

=

≥ +

≤

+ −

⎧
⎨
⎪⎪

⎩
⎪⎪

h

t t

t t

t t t

1 if 1

0 if

min( 1, ) otherwise

tiv

iv

iv

iv

CHG

CHG

CHG
(6)

where midnight is t = 0.
The national distribution of charging times under the

convenience charging scheme assumption and the correspond-
ing hourly MEFs are shown in Figure 4. The left y-axis shows
the percentage of charge time that occurs within each hour, and
the right y-axis shows the MEFs in kg CO2/kWh. Under the
convenience charging scenario, most of the charging (∼80%)
would occur within the period of 4:00 pm to 11:00 pm.

2.6. Scenarios Considered. We perform a Monte Carlo
simulation (N = 10 000) by taking random draws for each of
the random variables to estimate the vehicle CO2 emissions
under each scenario of emission factor estimation method-
ologies, charging schemes, and regional boundary definitions.
We summarize these scenarios in Table 2.

3. RESULTS AND DISCUSSION
Figure 5 shows, for each NERC region, the life cycle estimates
for the Nissan Leaf CO2 emissions per mile traveled under
different scenarios (colored bars), compared to that of Toyota
Prius HEV (green line) and the sales-weighted average ICEV
(red line) (in the SI we provide similar results for the Volt
emissions). Each bar represents the mean Leaf life-cycle

Figure 4. Convenience charging profile and hourly marginal emission factors. Figure 4(a) uses MEFs from ref 30 whereas Figure 4(b) uses MEFs
from ref 3. Lines correspond to the emission factors for different NERC regions, and the black bars show the percentage of total charge time per
hour.
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emissions using different scenarios and assumptions for
electricity emission factors and charging times. The error bars
for the marginal emissions estimates show the 5th and 95th
percentile emissions estimates. Error bars for state and
subregion values are the lowest and highest average state or
subregion emissions estimates in each region, respectively.
Mean Nissan Leaf life-cycle CO2 emissions estimates range
from 157 to 219 g CO2/mi in WECC, and from 295 to 395 g
CO2/mi in MRO. These values are comparable to results for
low and high carbon intensity scenarios investigated in ref 14.
The Toyota Prius HEV average emissions are about 238 g
CO2/mi, the emissions from the sales-weighted average ICEV
are 468 g CO2/mi, and these do not vary by region.
We find that the Nissan Leaf has lower expected life cycle

emissions than the average internal combustion engine vehicle
in all regions and across all scenarios. In addition, expected
MEF-based life cycle GHG emissions estimates for the Nissan
Leaf are lower than those of the Prius in western states
(WECC), Texas (TRE), New England (NPCC), and Florida
(FRCC), while the Leaf is higher emitting in the Northern
Midwest (MRO) regardless of charging scenario or MEF
estimation method. In the remaining regions (RFC, SPP, and
SERC) the Leaf’s expected emissions may be higher or lower
than the Prius, depending on which charging scenario and
MEFs estimates are used. Further, due to statistical uncertainty
in MEF estimates one cannot rule out the possibility that the
Leaf may be higher or lower emitting than the Prius in each
region. Comparisons with the Chevrolet Volt are provided in
the Supporting Information.
Next we discuss the implications of key assumptions and

scenarios used in this analysis, in particular the use of marginal
versus average emissions, the consumption- versus generation-
based marginal emission factors, the charging scheme assumed,
and regional boundary definitions. We perform t tests to ensure
sufficient Monte Carlo draws to determine which estimates
have larger expected value (see the SI).

3.1. Marginal versus Average Emissions. Results
indicate that marginal estimates differ from average estimates
in all regions, and the magnitude and direction of the difference
vary across regions. The expected value of marginal estimates
are higher in the MRO (7−34%) and NPCC (39−46%)
regions and lower in SPP (11−87%) than average estimates. In
other regions, marginal emissions may be as much as 24%
higher (SERC) or 28% lower (TRE) than average emissions
estimates, depending on assumptions for charging scheme and
marginal emissions estimation method. Both average and
marginal estimates account for regional variation in grid mix,
but only marginal estimates account for temporal variation due
to incremental changes in power demand over time. This
difference is large enough in several regions to change which
vehicle is expected to be lower emitting.

3.2. Consumption-Based versus Generation-Based
MEFs Estimates. Table 3 summarizes the median emissions

Figure 5. Nissan Leaf life cycle emissions (g CO2/mile) using
alternative grid emission factors by region and different scenarios for
vehicle charging. The life cycle stages included are as follows:
electricity production (blue); electricity upstream (red); vehicle
assembly and manufacturing (yellow); battery upstream and
production (green). The marginal emission cases show expected
marginal emissions estimates with error bars for the 5th and 95th
percentile values. Average generation estimates show NERC region
average emissions estimates with error bars that represent the lowest
and highest eGRID subregion or state emissions estimates within each
NERC region, respectively. Horizontal lines show expected Toyota
Prius hybrid and sales-weighted average vehicle emissions estimates.
Combined driving pattern (45% city and 55% highway) energy use

Figure 5. continued

from ref 39 was used for all vehicles. FRCC = Florida Reliability
Coordinating Council; MRO = Midwest Reliability Organization;
NPCC = Northeast Power Coordinating Council; RFC = Reliability
First Corporation; SERC = SERC Reliability Corporation; SPP =
Southwest Power Pool, RE; TRE = Texas Reliability Entity; WECC =
Western Electricity Coordinating Council; ERCOT = Electric
Reliability Council of Texas.
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difference between the Nissan Leaf and the Toyota Prius and
between the Nissan Leaf and the sales-weighted average ICEV.
This table shows the differences by region and by estimation
method (see the SI for similar results for the Chevy Volt). In
SERC, for example, the Prius HEV has higher median
emissions estimates than the Leaf when using generation-
based MEFs, but the Leaf has higher median emissions when
using consumption-based MEFs.
3.3. Convenience versus Delayed Charging. Results

also show that conclusions depend on the charging scheme.
Under convenience charging, most charging occurs during peak
system load times when more expensive but cleaner energy
sources are on the margin. Delayed charging (i.e., starting at 12
am and until vehicle is fully charged) results in higher Nissan
Leaf emissions (higher by 6−20% for generation-based and 3−
29% for consumption-based), with the exception of the NPCC

region (where delayed charging has lower emissions by up to
13%).

3.4. Regional Boundary Definition. We also find that
average emissions estimates are substantially different under
different regional boundary definitions. This observation is
congruent to the conclusion of Weber et al.19 on the substantial
difference in average electricity emission factors under different
regional boundary definitions. For example, state-based Leaf
emissions in WECC vary from 16 to 288 g CO2/mi for Idaho
and Wyoming, respectively, compared to NERC region average
emissions estimate of 130 kg CO2/mi. Similarly, eGRID
subregion average emissions estimates of 90 to 248 g CO2/mi
in CAMX and RMPA, respectively, vary significantly from
NERC region estimates. This is a key reason why conclusions
from existing regional comparisons of PEVs and gasoline
vehicles vary significantly. For example, Yawitz et al.,4 which

Table 3. Median CO2 Emissions Difference by Region and Estimation Method Computed as Vehicle Emissions Difference
Divided by Gasoline Vehicle Emissionsa

Nissan Leaf − Toyota Prius HEV (%) Nissan Leaf − avg ICEV (%)

NERC region Cons_Conv Cons_Del Gen_Conv Gen_Del Cons_Conv Cons_Del Gen_Conv Gen_Del

FRCC −12 0 −11 −6 −55 −49 −55 −52
MRO 46 69 24 43 −26 −14 −37 −27
NPCC 1 −17 −13 −15 −48 −58 −56 −57
RFC −12 15 14 23 −55 −42 −42 −37
SERC −10 −2 10 19 −54 −50 −44 −40
SPP −24 −19 −4 7 −61 −59 −51 −45
TRE −24 −15 −12 −6 −61 −57 −55 −52
WECC −30 −29 −13 −12 −64 −64 −56 −55

aNote: The headings are as follows: Cons_ = consumption-based MEF; Gen_ = generation-based MEF; _Conv = convenience charging; _Del =
delayed charging.

Figure 6. Probability that the Nissan Leaf is lower CO2 emitting than the Toyota Prius Hybrid by region and charging scheme. Green indicates that
the Nissan Leaf is lower emitting than the gasoline vehicle (Toyota Prius Hybrid or sales-weighted ICEV), while red means that the opposite holds.
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uses 2010 state emission factors, indicates that the Leaf is lower
emitting than the Prius in 14 states, while Anair et al.,5 which
uses eGRID subregion 2009 emission rates, declares the Prius
to be lower emitting in more but sometimes different states.
3.5. Robustness of Vehicle Comparisons. Comparison

of expected marginal CO2 emissions estimates in Figure 6
indicates that the Leaf is lower emitting than the most efficient
gasoline vehicle (Toyota Prius HEV) in the FRCC, NPCC,
TRE, and WECC regions and higher emitting in the MRO
region, regardless of the estimation method (i.e., consumption-
or generation-based MEF, convenience or delayed charging). In
ref Anair et al.,5 which estimates Leaf emissions using AEFs by
eGRID subregion, the Leaf is lower emitting in SERC eGRID
subregions, whereas we find that results in these regions are
uncertain.
To account for uncertainty in MEF values, we estimate the

probability that the Nissan Leaf is lower emitting than the Prius
Hybrid by region and estimation method, as shown in Figure 6.
As shown, the probabilities are different under different
estimation methods and charging schemes, but some findings
are robust: there is high probability that the Leaf is lower
emitting in WECC and TRE and the Prius is lower emitting in
MRO regardless of MEF estimation method or charge timing.
Similar values for the Chevrolet Volt are provided in the SI.
These comparisons differ from Graff Zivin et al.3 because of

the inclusion of manufacturing and life cycle components rather
than only tailpipe and power plant emissions, they differ from
Yawitz et al.4 and Anair et al.5 because of the use of marginal
rather than average emission factors, and they differ from
EPRI/NRDC’s analysis,15 which uses assumptions for future
grid characteristics and does not report regional differences.
Vehicle operation constitutes the largest part of life cycle

CO2 emissions for all vehicles, as shown in the SI. However,
lithium-ion battery production emissions are also significant for
BEVs, constituting about 12% of life cycle emissions, on
average. Our range of life cycle estimates is comparable to past
estimates.8,14,22

3.6. Limitations. Our analysis examines only GHG
emissions and does not estimate marginal changes in air
pollutants due to PEV charging nor other potential benefits of
reducing gasoline consumption. Given that, in several locations
across the United States, vehicle life cycle air pollution
externalities can be larger than greenhouse gas emissions
externalities, particularly when coal-fired power plants operate
on the margin8,52 and the emissions affect densely populated
areas, future work on air pollutants would be needed to
understand social costs of PEVs more broadly.
The marginal emissions estimates used are based on

regression models that estimate marginal grid emission factors
by hour and season using historical data on power plant
operations and emissions. These estimates capture the
electricity grid historically but do not capture the potential
and expected changes in the grid over time (including during
the life of the vehicle). However, the data sets used will be
regularly updated by the Environmental Protection Agency, so
it is possible to update the analysis as changes in the electricity
sector occur. While average emission factors are expected to
decrease over time in response to policy, marginal emission
factors may increase in some regions and decrease in other
regions as the change in power plant fleets and feedstock prices
modify which plants operate on the margin at different seasons
and times of day.

Second, marginal emissions estimates have known potential
sources of bias, as discussed previously, including the potential
of our consumption-based estimates to count renewable plants
that, by chance, happen to ramp production at a time when
demand increases as though they would produce less in the
absence of such demand. In practice, most renewables sell
nearly all of the electricity they can produce regardless of the
existence of new PEV load.
Additionally, the generation-based estimates used ignore

interregional trade, plant energy consumption, and variation in
transmission efficiency. We should also note that the MEFs in
Graff Zivin et al.3 and in Siler-Evans et al.30 use different years
of analysis. The two MEF estimates we use have different
benefits and disadvantages with respect to mitigating sources of
error, and we use both to assess robustness. Future work
estimating interregional trade in the generation-based approach
could improve MEF estimates and resolve some of the
discrepancy between consumption- and generation-based
estimates.
Additionally, our maps suggest that all locations within a

NERC region have identical marginal emission factors. In
practice, marginal emissions may vary within each region, but
we lack the resolution to differentiate sub-NERC-region
variation.
Finally, we estimate only the immediate life cycle emissions

implications of electric vehicles versus gasoline vehicles but do
not include the systems effects of policies such as the corporate
average fuel economy standards, which may lead to changes in
vehicle fleet mix and net emissions each time an electric vehicle
is sold in place of a gasoline vehicle.51 We also ignore changes
in fuel prices, which could lead to different driving patters
between ICV and PEVs, and we ignore other factors that vary
regionally, such as driving patterns53−55 and climate.56

Extensions of our study that incorporate regional climate and
driving patterns could more fully characterize regional differ-
ence in PEV implications.

3.7. Implications. In summary, there is significant regional
variation and uncertainty in the CO2 emissions reduction
potential of PEVs because of the temporal and regional
differences in electricity grid mix and because there is
uncertainty regarding marginal emissions associated with
electricity consumption in each region. Nevertheless, some
comparisons are robust: The Nissan Leaf BEV is lower emitting
than the Toyota Prius HEV in western states (WECC) and
Texas (TRE), and the Prius is lower emitting than the Leaf in
the northern Midwest (MRO) regardless of charge timing or
MEF estimation approach. Additionally, the Chevy Volt PHEV
is higher emitting than the Toyota Prius in the Eastern
Interconnect.
Use of marginal emission factors, rather than average

emission factors, is appropriate for estimating the emissions
implications resulting from new PEV adoption, and con-
sumption-based marginal emissions estimates that account for
interregional trade are conceptually more appropriate than
generation-based emissions estimates within NERC regions.
However, because of potential sources of error in the
estimation approach, we compare both consumption-based
and generation-based MEF estimates. Use of average emission
factors is incorrect for understanding emissions implications of
new PEV adoption; however, the question of what emissions
PEV charging is “responsible for” is a less-straightforward
question of allocation, where use of AEFs is one possible value
judgment.
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Temporal variation should also be taken into consideration
when formulating policies that encourage consumers to charge
at certain times of the day (e.g., when electricity demand and
prices are lowest). For example, emissions using delayed
charging (starting at midnight) are higher in most regions due
to more carbon-intensive marginal grid mix during nonpeak
hours.
Given substantial regional differences in PEV GHG

emissions implications, differential regional policy may be
warranted, but current differences in state subsidies57 do not
align particularly well with regions where PEVs provide the
largest GHG emissions benefits. For example, the state with the
largest state subsidies ($7500) for BEVs is West Virginia, which
is under the RFC region, where the Nissan Leaf and the Chevy
Volt are likely higher emitting than the Toyota Prius. Under the
Clean Power Plan Proposal, West Virginia is expected to bring
down its carbon rate to about 730 kg/MWh, but that level is
not yet low enough for PEVs to be lower emitting than the
Prius, and the effect of average emissions reductions on
marginal emissions has not yet been characterized. The second
highest state subsidies ($6000) are in Colorado, part of the
WECC region where the Leaf is likely lower emitting than the
Prius and the Volt may be higher or lower. The third highest
state subsidies ($5000) are in Georgia, where the comparison
of the Leaf and Prius is inconclusive and the Volt is higher
emitting. Of course, GHG benefits must be balanced against
other goals, including reduction of air pollution and oil
dependency as well as economic factors.
In sum, we offer the following recommendations for

policymakers: (1) Be wary of regional claims about electric
vehicle air emissions implications based only on regional
electricity generation mix, since the emissions associated with
new PEV charging in a region can differ substantially from the
average generation mix in that region. (2) Consider federal and
regional strategies for promoting electric vehicle adoption most
strongly in the regions where they can do the most good. When
considering GHG reductions alone, this would mean the
western U.S. and Texas (where there is high confidence that
GHG emissions of the Nissan Leaf are lower than the best
gasoline vehicles) and in Florida and New England (where the
Leaf also likely has lower GHG emissions). However, other
factors beyond the scope of this analysis, such as air quality
implications, should be considered as well. (3) Continue to
reduce the emissions intensity of the electricity grid. When
electricity generation is sufficiently clean, electric vehicles have
lower GHG emissions than the most efficient gasoline vehicles.
(4) Avoid treating PEVs as though they are all the same. While
the Nissan Leaf has lower GHG emissions than the gasoline
Toyota Prius in several regions, the Chevy Volt has higher
GHG emissions than the Toyota Prius across much of the U.S.
Policies that target outcomes (e.g., GHG emissions reduction)
rather than specific technologies are generally preferred. (5)
Finally, incentivizing nighttime charging should be avoided:
while night charging can be preferred by grid operators and can
lower costs, in most regions nighttime charging increases GHG
emissions, and nighttime charging can also increase health costs
in some regions due primarily to increased air pollution from
coal-fired power plants.58
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