

Development of metrological standards for traceable particle number measurements of automotive exhaust emissions

WG 3.23: Aerosol and Particle Diagnostics

Andreas Nowak, Arne Kuntze, Johannes Rosahl, Margit Hildebrandt, Volker Ebert, Egbert Buhr

- About PTB: Role of legal metrology
- Primary PN standard: Needs and procedures
- PN Results: Inter comparison and PTB setup
- Conclusion and outlook

PIB PTB: To measure is to know

About PTB:

- Federal Ministry of Economics and Technology (BMWi)
- 170 Mio. € budget, plus third party funding
- Approx. 1300 permanent staff and 550 non-permanent staff including 110 PhD students

Role of PTB in legal metrology:

- Provides traceability to national standards by calibrating reference standards of verification authorities and notified bodies
- Type approval and certification according to 23 German laws and regulations (e. g. verification act, law on civilian firearms)
- Guidance of federal ministries, the verification authorities and notified bodies
- Guidance of manufacturers in understanding the verification act and the MID
- Collaboration in respective to international organisations OIML, WELMEC

Need for PN-primary standard

Procedure of PN inter comparison

→ Establishing NMI capabilities and measurement uncertainties

5

PN-comparison: Results of primary method

First comparison of its kind for Faraday Cup Aerosol Electrometer (FCAE) in EURAMET 1244 (Mar. 2014):

- Different types of aerosols: soot; DOS; NaCl
- DOS-particle with sizes from 20 to 200 nm and conc. at 10.000 cm⁻³

- → For all participants: Uncertainty of ± 2% for DOS particle regime
- → PTB: Full uncertainty budget of ± 7 % for soot particle size 15 to 150 nm, conc. at 650 to 12.000 cm⁻³

PN-comparison: Results of secondary method

Also first comparison of its kind for condensation particle counter (CPC) in EURAMET 1282 (Nov. 2014):

- Different types of aerosols: soot; silver sintered (more spherical) and unsintered
- Soot particle size range 23 to 100 nm, conc. 100 to 20.000 cm³

more information see:

• NPL Report AS 94

- → For all participants: Uncertainty budget of ± 7 % for soot regime
- → PTB: Full uncertainty budget of ± 10 % (soot, silver) at this time

PTB-primary standard for PN

Goal: Suitable calibration aerosols for PMP conform EECPC

- → High purity substance for calibration (propane and silver)
- → High monodispersity (Minimization of multiple charges)
- → Sufficient particle number concentration (PNC)
- → Tunable particle diameter between 10 to 100 nm (**Dp**)
- → Validate morphological properties
- → High thermal stability, up to 350 °C

PIB Results of soot generator: operation points

PMP range for calibration of EECPC

- only PN spectra below 75 nm relevant for calibration
- narrow PNSD could be observed

PIB Results of soot generator: long term stability

Point of interest 23 nm (counting efficiency of 50%) about 1 year of operation

- → Increased stability by thermoconditioning of soot particles, but still not suitable for high thermal stability
- → NMIs decided to use Ag nanoparticles as suitable candidate for these criteria:
 - → Advantage: Full calibration of entire PMP-system (VPR, DF and CPC)

Ag-Nucleation furnace: PTB Optimization

larger furnace with 3 heating zones → larger particles → increase of residence time

- optimization flow scheme and T gradient → implementation of heating shields:
 - inlet shield with nozzle (different sizes)
 - outlet shield with hoper
- minimization of Ag-agglomerates → water cooling flange at end of tube → shock cooling
- Goal to fulfill PMP size range from 23 to 55 nm

Results for new nucleation furnace

For different nozzle sizes at one flow ratio (1:1) from 960 °C up to 1300 °C

- High PNC (> 10⁵ cm⁻³) above 15 nm
- 2 mm nozzle: mean mobility diameter up to 65 nm, relatively broad size distribution
 - → 2 mm nozzle well suited for calibration setup

Results of nucleation furnace: Particle Shape

STEM pictures for different types of tube furnaces

Old furnace construction comparable to Scheibel and Porstendörfer

New tube furnace at PTB

Without sintering mostly spherical particles

First calibration: Linearity test of EECPC

For PTB-EECPC against Ref. FCAE and Ref. CPC

→ analysis fulfills ISO 27891 (Mar. 2015) based on thermoconditioned soot particles

First calibration: Counting efficiency of EECPC

PTB results compared to EURAMET workshop in Leipzig

- → Analysis for fit function based on formula given by ISO 27891 (Mar. 2015)
- → Slight underestimation of Dp50 efficiency for all calibration aerosols

Primary and secondary PN reference method validated via international inter comparison workshops

 PMP-EECPC calibration setup was build for soot as well as for Ag particles in size range from 15 to 75 nm with suitable PNC up to 12.000 cm⁻³

Evaluation of PTB calibration procedures is comparable to ISO 27891

- Further optimization of Ag size range to smaller sizes below 10 nm via secondary nucleation furnace
- Minimization of charge correction factors above 60 nm
 - →2nd UDMPS with unipolar charging
 - →Increasing of PNC for monodisperse fraction
- Internal Audit is needed to provide external calibration certificates for EECPC end user
 - → Establish PTB-EECPC calibration service in middle 2016

Thank you very much for your attention! → Questions?

Bundesallee 100 38116 Braunschweig

Dr. Andreas Nowak

Email: andreas.nowak@ptb.de

www.ptb.de