LOWBRASYS OVERVIEW
Brussels, 10 March 2016

39th PMP Meeting

Speaker name: Mattia Alemani (Brembo)
LOWBRASYS: a LOW environment impact BRAke SYStem
GA 636592 - MG-3.1-2014: Technologies for low emission powertrains

10 members from 6 European countries
Total costs: 9.5 million €
Project Start: 01. September, 2015
Project duration: 36 month
Background

<table>
<thead>
<tr>
<th>Part affected</th>
<th>Particles dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nose cavity and pharynx</td>
<td>5 – 10 μm</td>
</tr>
<tr>
<td>Trachea</td>
<td>3 – 5 μm</td>
</tr>
<tr>
<td>Bronchi Bronchioles</td>
<td>2 – 3 μm 1 – 2 μm</td>
</tr>
<tr>
<td>Alveolar ducts and alveoli</td>
<td>0.1 – 1 μm</td>
</tr>
</tbody>
</table>

Soot particles in human lung
In 2013, tire and brake wear contributed approx. 20-30 % to the total road transport PM emissions (EEA33). The relative contribution to the road transport of these unregulated emissions are expected to rise significantly due to declining exhaust emissions.
Goals of the project

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>To demonstrate a novel and low environmental impact brake system that will reduce micro and nanoparticles emissions by at least 50%;</td>
</tr>
<tr>
<td>2.</td>
<td>To improve the measurement and understanding of micrometre-sized and ultrafine particles and their effects on health and the environment;</td>
</tr>
<tr>
<td>3.</td>
<td>Recommendations to policy makers.</td>
</tr>
</tbody>
</table>
LOWBRASYS Strategy path

PM (PN) prevention
- Disc material development
- Disc coating development
- Pad material formulation
- Dynamic adaption of brake parameters

PM (PN) reduction
- Eco-informed braking style by smart dashboard (human based)
- Smart braking distribution between front and rear axle (machine controlled)

PM (PN) capturing
- Capturing system at the pad to disc interface

LOWBRASYS Technology Demo

LOWBRASYS Validation and Assessment on i) passenger car; ii) city logistic light trucks

Simulation
- Micro level: MCA
- Meso level: CA
- Macro level: FEM

Testing
- “Pin on disc”, i.e. lab scale
- “Dyno stand set up”, i.e. wheel-scale
- Real vehicle road test

LOWBRASYS Health and Environment assessments

LOWBRASYS Policy and Legislation recommendations
Technology overview

Smart Braking Dashboard
- Braking classifier
- Braking Manager
- Braking Coach (HMI)

Adv. Brake disc
- Ceramic coatings (WC-Co-Cr, Cr₂C₂-Ni-Cr and Al₂O₃-TiO₂) on cast iron and aluminum discs
- Increase of surface hardness through heat treatments, press hardening, nitriding and carbonitriding

Adv. Brake pad
- Goal: Innovative NAO-type friction materials with braking performance of Low-Met friction materials
- Modified formulation (remove Carbonaceous material and reduce Cu (to <0.5%))
- Clay materials (vermiculite and kaolinite) with embedding of nanoparticles (ZnO and TiO₂).

Control strategy
- Brake by wire system
- New brake force sensors to optimize control loops for brake torque

Particle Capturing System
- Combination of technologies based on magnetic, electrostatic, active ventilation
Testing overview

Tribometer testing
- Creation of wear maps
- Rank materials with respect to wear

Dyno Testing (up to roller dyno)
- To assess the impact of these technologies under close-to-real-world in-use conditions

Test track
- Safety, Performance tests & validation
- Comparison to laboratory result

Real-World
- Real world driving tests in 2 EU cities
- 1000 km testing in each city under real conditions

Supported by Simulations
- On different scales to simulate wear and particle emissions

Perricone et al. (2015)
Söderberg et al. (2009)
Health, Environment & Recommendations

Effects on Health and Environment
- PM analysis with state-of-the-art techniques to assess key factors of toxicity of inhalable particles
- Environmental assessment: Investigate impact on soils and aquatic communities including phytotoxicity tests
- Toxicity of PM will be investigated by exposure to selected human cell lines.

Life Cycle assessment
- To assess environmental impact
- Considers entire production chain from raw materials to product disposal
- Life Cycle Cost Analysis comparing new and traditional braking system

Recommendations to policy makers
Defining the following recommendations
i) a solid, reproducible and repeatable measurement procedure for assessing PM emissions from brake wear
ii) Roadmap on the reduction of PM emissions from non-exhaust gases
iii) Results of socio-economic impact including cost-benefit assessment of monetary benefits associated to PM emissions reductions brought by the project.
Expected exploitation and dissemination

Exploitation
- Identification of stakeholders
 - Set up of User Group
- Interim Exploitation plan
 - Market potential analysis
- Validation of interim results from User Group
 - Definition of exploitable project results
 - Market potential and full business model
- Validation of final results from User Group
 - Exploitation Agreement
 - Exploitation Plan

Initial Stage
- 12 months

Mid Stage
- 24 months

Advanced Stage
- 30 months

Final Stage
- 36 months

Dissemination
- Web Site
- Project Communication Material
- e-Brochure, Flyers
- Press Release on project objectives
- Web Site contents update
- Communication at Intl. events
- Awareness campaign (network)
- Press Release on project objectives
- Web Site update with public deliverable
- Presentation at international events
- Publication of Papers and articles
- Web Site updated with public deliverable
- Presentation at international events
- Realisation of final conference
- Publication of Papers and articles
- Press Release for wider public

LOWBRASYS KICK-OFF MEETING 14-15 September 2015
Expected impacts

1. Cleaner, more efficient road transport activities through advances in brake concept.
2. At least a 50% reduction of particle emissions demonstrated.
3. Contribution to improvements of urban air quality in the midterm and strengthening the competitiveness of the EU car industry.