

LOWBRASYS OVERVIEW

Brussels, 10 March 2016

39th PMP Meeting

Speaker name: Mattia Alemani(Brembo)

LOWBRASYS: a LOW environment impact BRAke SYStem

GA 636592 - MG-3.1-2014: Technologies for low emission powertrains

EUROPEAN COMMISSION

Total costs: 9.5 million €

Project Start: 01. September, 2015

Project duration: 36 month

Background

Soot particles in human lung

Background

In 2013, tire and brake wear contributed approx. 20-30 % to the total road transport PM emissions (EEA33). The relative contribution to the road transport of these unregulated emissions are expected to rise significantly due to declining exhaust emissions.

Goals of the project

1.	To demonstrate a novel and low environmental impact brake system that will reduce micro and nanoparticles emissions by at least 50%;
2.	To improve the measurement and understanding of micrometre-sized and ultrafine particles and their effects on health and the environment;
3.	Recommendations to policy makers.

Technology overview

Smart Braking Dashboard

- -Braking classifier
- -Braking Manager
- -Braking Coach (HMI)

Control strategy

- Brake by wire system
- New brake force sensors to optimize control loops for brake torque

Particle Capturing System

- Combination of technologies based on magnetic, electrostatic, active ventilation

Adv. Brake disc

- Ceramic coatings (WC-Co-Cr, Cr₂C₂-Ni-Cr and Al₂O₃-TiO₂) on cast iron and aluminum discs
- Increase of surface hardness through heat treatments, press hardening, nitriding and carbonitriding

Adv. Brake pad

- Goal: Innovative NAO-type friction materials with braking performance of Low-Met friction materials
- Modified formulation (remove Carbonaceous material and reduce Cu (to <0.5%))
- Clay materials (vermiculite and kaolinite) with embedding of nanoparticles (ZnO and TiO2).

02/12/2014

Testing overview

Dyno Testing (up to roller dyno)

To assess the impact of these technologies under close-to-realworld in-use conditions

Test track

- Safety, Performance tests & validation
- Comparison to laboratory result

Real-World

- Real world driving tests in 2 EU cities
- 1000 km testing in each city under real conditions

Söderberg et al. (2009) Supported by Simulations

 On different scales to simulate wear and ₈ particle emissions

Tribometer testing

- Creation of wear maps
- Rank materials with respect to wear

02/12/2014

Health, Environment & Recommendations

Effects on Health and Environment

- PM analysis with state-of-the-art techniques to assess key factors of toxicity of inhalable particles
- Environmental assessment: Investigate impact on soils and aquatic communities including phytotoxicity tests
- Toxicity of PM will be investigated by exposure to selected human cell lines.

Life Cycle assessment

- To assess environmental impact
- Considers entire production chain from raw materials to product disposal
- Life Cycle Cost Analysis comparing new and traditional braking system
- According to ISO 14040:2009,14044:2006

Recommendations to policy makers

Defining the following recommendations

- a solid, reproducible and repeatable measurement procedure for assessing PM emissions from brake wear
- ii) Roadmap on the reduction of PM emissions from non-exhaust gases
- iii) Results of socio-economic impact including costbenefit assessment of monetary benefits associated to PM emissions reductions brought by the project.

Expected exploitation and dissemination

EXPLOITATION		DISSEMINATION
Identification of stakeholders	Initial Stage	Web Site Project Communication Material
Set up of User Group	12 months	e-Brochure, Flyers Press Release on project objectives
Interim Exploitation plan Market potential analysis	Mid Stage	Web Site contents update Communication at intl. events Awareness campaign (network)
	24 months	Press Release on project objectives
Validation of interim results from User Group Definition of exploitable project results Market potential and full business model	Advanced Stage 30 months	Web Site update with public deliverable Presentation at international events Publication of Papers and articles
Validation of final results from User Group	Final Stage	Web Site updated with public deliverable Presentation at international events
Exploitation Agreement Exploitation Plan	36 months	Realisation of final conference Publication of Papers and articles Press Release for wider public

Expected impacts

- 1. Cleaner, more efficient road transport activities through advances in brake concept.
- 2. At least a 50% reduction of particle emissions demonstrated.
- 3. Contribution to improvements of urban air quality in the midterm and strengthening the competitiveness of the EU car industry.

