

BRAKE WEAR & DUST: COMPARISON OF TEST PROCEDURES

Dr. Jaroslaw Grochowicz, Ford

PMP Meeting, Brussels, March 2016

TEST METHODS FOR WEAR TESTING: DYNO TESTING

- Wear Dynamometer Tests usually run at temperatures 100°C and higher
 - SAE J2707 General Wear Test 100-500°C
 - SAE J2707 Block Wear Test 100-350°C
- Pros:
- Fast
- Good for friction development purposes (comparison of materials)
- Cons:
 - Risk of "conditioning" of pad material at multiply identical brake applications
 - Does not reflect "normal driving pattern" regarding speed, deceleration, application sequence, brake temperature
 - Wear evaluation in the range above 100°C only

TEST METHODS FOR WEAR TESTING: VEHICLE TESTING

- Vehicle brake wear durability testing is combined with brake NVH testing.
- There are generally two methods (with their possible regional substitutions):
 - Mojacar (cross country + city traffic + highway)
 - LACT (LA suburban + city traffic)
- Basically developed as brake noise tests, need higher brake temperatures (above 200°C max)

• Mojacar average / max temperature: 125-175°C / >250°C

LACT average / max temperature: 100-150°C / >200°C

 Reaching above temperature levels require adequate driving pattern and vehicle payload.

BRAKE TEMPERATURE DURING VEHICLE TESTING

Temperature trace during Mojacar durability test (OE1)

Temperature histogram

TEST METHODS FOR WEAR TESTING: VEHICLE TESTING

Test	% of brake applications above 100°C
Mojacar OE1	59
Mojacar OE2	73
Internal test OE2	68
LACT OE1	73
LACT OE2	19*

* Run DOW

Starting temperature of SAE J2707 dyno testing

European wear testing: More than 59% of all brake applications are above 100°C

But which temperatures does the brake see at a "normal" customer and what are the implications?

CASE STUDY

- Two brake specs with European performance pads
- Similar brake life evaluated in Mojacar procedure
- Different dust generation on the vehicle in daily usage

COLOGNE TRAFFIC TEST

- Run on vehicle
- Vehicle equipped with data logger
 - Speed
 - Rotor temperature
 - Deceleration
 - Brake pressure
 - Distance
- Run in Cologne
- Mostly "driver only"*
- In Germany, the average pay load is 1,5 persons (Pkw-Besetzungsgrad bei der privaten Autonutzung)

Source:

DLR - Deutsches Zentrum für Luft- und Raumfahrt, Institut für Verkehrsforschung, infas Institut für angewandte Sozialwissenschaft, 2010

http://www.forschungsinformationssystem.de/servlet/is/79638/

INITIAL DISC AND SPEED TEMPERATURE ON COLOGNE CIRCUIT

More than 90% of brake applications were made at brake temperatures below 100°C

INITIAL SPEED AND DISC TEMPERATURE ON WIESBADEN CIRCUIT (INITIAL RUN); DATA: FEDERAL MOGUL

City Traffic section started with T>150°C.

INITIAL SPEED AND DISC TEMPERATURE ON WIESBADEN CIRCUIT (ADDED CITY TRAFFIC WITH T_{INI}=50°C); DATA: FEDERAL MOGUL

City Traffic section run with $T_{ini}=50^{\circ}C$.

In total: More than 73% of brake applications were made below 100°C

VEHICLE WEAR TESTING: BRAKE TEMPERATURE LEVEL

Test	% of brake applications above 100°C
Mojacar OE1	59
Mojacar OE2	73
Internal test OE2	68
LACT OE1	73
LACT OE2	19
Cologne	10
Wiesbaden	27

- (It is known, that) Mojacar does not represent "normal" customer driving pattern common assumption: approx. double brake life in the field compared with life in Mojacar.
- Real daily usage (Cologne) and daily usage simulation (Wiesbaden) show very high percentage of brake applications below 100°C (73-90%).
- What are the implications of this finding on evaluated vehicle?

MODIFICATIONS OF TEST METHODS: DYNO TEST

- Dyno testing
 - Modification of Wear vs. Temperature tests by adding low temperature sections with 60°C and 80°C temperature levels
 - Reduced deceleration level
 - Slight speed increase
 - Number of stops 300 per temperature level

Affected friction materials tested in the same brake

DISC WEAR IN GRAM IN A DYNO WEAR VS. TEMPERTAURE TEST

Both materials shows similar disc wear between 100 and 200°C as in current J2707 procedure

* Disc wear has high importance for brake dust generation

DISC WEAR IN A EXTENDED DYNO WEAR VS. TEMP. TEST

...... but different wear under 100°C!

VEHICLE WEAR TESTING: BRAKE TEMPERATURE LEVEL

- Vehicle testing
 - New procedure (distance and speed controlled) as combination of:
 - Deceleration levels
 - Speed levels
 - Distances between the stops
 - Approx. average initial brake temperature of 80°C (brake/vehicle depended due to driving pattern)
 - Evaluation of
 - Mass loss for pad and rotors
 - Dust deposition on wheel

MODIFICATIONS OF TEST METHODS: NEW VEHICLE TEST

Material B (higher TGW), dust generated between stops 400 to 600

Material A (lower TGW), dust generated between stops 400 to 600

CONCLUSIONS

- Typical driving patterns, especially with low vehicle payload (driver only), are characterized by high percentage of brake applications with rotor temperature below 100°C
- These thermal conditions are not sufficiently reflected in current wellestablished dynamometer and vehicle brake wear procedures
- Dyno SAE J2707 procedures can be easily updated to incorporate conditions critical for dust generation
 - Remark: brake applications at identical parameters may lead to a negative effects like "friction conditioning" influencing wear ratios
- New vehicle procedures for dust generation (and/or their simulations on brake dynamometers) must be developed or an (significant) update of established procedures must be undertaken to better integrate and reflect "driver only" conditions.
- The simulated driving profile will be dependent on the fact which driving conditions should simulated: mostly city traffic only or a combination of different conditions.

Thank you

Q&A

