

Independent Transport Research, Consultancy & Testing

Creating the future of transport

Research findings for setting dummy injury thresholds for Regulation 129 Phase 2 regarding chest & abdomen loading

Mark Pitcher, Jolyon Carroll (TRL) Peter Broertjes (European Commission) Child Safety Informal Working Group, January 2016

Background

- Work has been conducted on behalf of the European Commission to investigate and validate proposals for Phase 2 of Regulation 129
- Phase 2 "non-integral" child restraint systems, where a child is positioned on a child seat, but essentially wearing the vehicle seat belt
- Key injury mechanisms for non-integral seats are:
 - Head contact
 - Chest loading
 - Abdomen loading
- Head accelerations & excursions measured as in Phase 1
- Abdomen and chest limits proposed but not validated in R129 test environment

Objectives

Propose solutions that improve the capacity of UN Regulation 129 to differentiate between non-integral child restraint systems

Abdomen loading

 Penetration of the lap part of the seat belt into the gap between the legs and the pelvis (and its implications for the assessment of abdomen injury protection)

Chest loading

 Movement of the diagonal part of the seat belt towards the neck (and its implications for the assessment of chest injury protection)

Abdomen Loading - Tools

Pelvis Inserts / Hip Liner • Q3/Q10 used DOREL pelvis insert

Abdomen Sensors

- Humanetics abdomens with moulded slots for APTS
- Q10 used 50mm APTS
- Q3/Q6 used 40mm APTS

Q6 used Humanetics hip liner

Abdomen Loading – Test Conditions

Four different test conditions were used:

R129	UMTRI	R129+ Pulse	UMTRI & R129+
 R129 pulse Standard seat belt installation (50N) 	 R129 pulse Dummy initially slouched Belt tensions ≈15N 	 Higher g pulse 50 km/h 25-32g Standard seat belt installation (50N) 	 Higher g pulse Dummy initially slouched Belt tensions ≈15N
		35 30 R129+	→

Abdomen Loading – Child restriants

No CRS	Poor CRS	Good CRS
 Dummy placed directly on test bench 	 Modified to remove lower belt guides P10 submarines using R44 or R129 conditions 	 Approved to R44 Lap belt guidance

Abdomen Loading - Results

Q10

- Using DOREL pelvis insert results in:
 - Submarining without CRS & belt loads abdomen
 - Submarining with poor CRS
 - No submarining or abdomen loading with good CRS
- When dummy does submarine, sensors measure >1.2 bar

Test	CPS	Submarine	Belt in	Pressure (bar)			
Test	CRS	Submanne	Abdomen	L	R		
D120	N/A	Y	Y	2.01	1.43		
R129 -	Poor	Y	Y	1.32	1.40		
UMTRI	Poor	Y	Y	2.41	1.31		
R129+ Pulse	Poor	Y	Y	1.94	1.32		
UMTRI & R129+	Poor	Y	Y	2.62	1.44		
	Good	Ν	Ν	0.60	1.06		

Abdomen Loading - Results

Q6

Proposed limit – 1.2 bar

- Using Humanetics hip liner results in:
 - No submarining without CRS, but belt loads abdomen
 - Submarining with poor CRS
 - No submarining or abdomen loading with good CRS
- When dummy does submarine, sensors measure <1.2 bar
- Exception when UMTRI installation used >1.2 bar

Test	CDS	Submarina	Belt in	Pressure (bar)			
Test	CRS	Submanne	Abdomen	L	R		
P120	N/A	Ν	Y	0.83	0.89		
R129	Poor	Y	Y	0.93	0.93		
UMTRI	Poor	Y	Y	1.21	1.18		
R129+ Pulse	Poor	Y	Y	1.16	1.13		
UMTRI & R129+	Poor	Y	Y	1.81	1.39		
	Good	Ν	Ν	0.32	0.32		

Abdomen Loading - Results

Q3

- Using DOREL pelvis insert results in:
 - Belt abdomen loading in poor CRS
 - Submarining with poor CRS using UMTRI & R129+ pulse
 - No submarining or abdomen loading with good CRS
- When dummy did submarine, sensors measured <1.2 bar
 - 1 bar when Q3 submarines
 - 0.39 0.58 bar from belt loading abdomen without submarining

Test	CDS	Submarina	Belt in	Pressure (bar)			
Test	Abc		Abdomen	L	R		
R129	Poor	Ν	Y	0.39	0.47		
UMTRI	Poor	Ν	Y	0.51	0.56		
R129+ Pulse	Poor	Ν	Y	0.56	0.58		
UMTRI & R129+	Poor	Y	Y	1.06	0.95		
	Good	Ν	Ν	0.22	0.41		

Abdomen Loading – Implications for Regulation 129

Q-Series dummies should be used with hip liners

- Q3 and Q10 versions need to be made 'productionready' by Humanetics
- Abdomen loading thresholds:
 - Q10 could use 1.2 bar
 - Q3/Q6 consider:
 - UMTRI positioning procedure
 - R129+ pulse
 - Revising the limit with current R129 test conditions

Chest Loading - Instrumentation

Deflection sensors

- Q10 has upper & lower chest deflection measurements
- Humanetics developed Q3/Q6 deflection measurement at clavicle

Chest Loading – Test Conditions

Two different test conditions were used:

R129	Extreme upper anchorage
 R129 pulse Standard seat belt anchorage positions used 	 Upper anchorage moved forwards, downwards and outwards Giving a worse initial position over the shoulder
	 Belt not directly over the centre of the clavicle

Chest Loading – Child restriants

No CRS	Booster Seat	Booster Cushion
 Dummy placed directly on test bench 	 Booster seat with backrest which has a belt guide 	 Booster cushion (no backrest)

Chest Loading - Results

Q10

- Seat belt remains on the shoulder of dummy (no slippage)
- Dummy is able to detect poor belt path as one sensor is severely loaded
- Q10 is able to measure at least 56 mm deflection
- Proposed limit of 56 mm seems appropriate

Test	est CRS Be	Belt in	Chest Deflection			
Test		Neck	Upper	Lower		
R129	No CRS	Y *	33.36	29.13		
R129	Booster Seat	Ν	50.41	48.70		
R129	Booster Cushion	Ν	46.18	74.05		

*Belt slides to neck because dummy submarines

Chest Loading - Results

Chin to chest contact influencing chest deflection measurement:

Chest loading - Results

Q6

- Using R129 position seat belt slips into neck
- Using extreme position seat belt remains on the shoulder of dummy
- Chest deflection reaches physical limit before 56 mm
- Clavicle sensor detects upper ribcage loading but also reaches physical limit

Test	CRS	Belt in Neck	Clavicle (1 st Peak)	(Clavicle 2 nd Peak)	Chest (1 st Peak)	(Chest 2 nd Peak)
R129	No CRS	Started	21.73		23.46	18.86		33.47
Extreme	No CRS	Ν	34.15		36.84	33.34		37.10
R129	Booster seat	Y	29.73		28.82	23.75		30.98
Extreme	Booster seat	Ν	31.88		32.91	33.51		34.49
R129	Booster cushion	Y	31.35		31.91	27.46		29.72
Extreme	Booster cushion	Ν	28.71		-	35.26		35.26

Chest loading - Results

Q3

Proposed limit – 40 mm

- Using R129 position seat belt slips into neck
- Using extreme position seat belt slips into neck in all but 1 test (very wide initial position of belt over shoulder)
- Ribcage reaches physical limit before 40mm chest deflection
- Clavicle sensor detects upper ribcage loading but also reaches physical limit when belt doesn't slip into neck

Test	CRS	Belt in Neck	Clavicle (1 st Peak)	Clavicle (2 nd Peak)	Chest (1 st Peak)	Chest (2 nd Peak)
R129	Booster cushion 1	Y	22.57	39.37	16.51	34.25
Extreme	Booster cushion 1	N	32.16	25.07	43.29	37.46
R129	Booster cushion 2	Y	27.09	39.76	21.95	38.25
Extreme	Booster cushion 2	Y	36.73	39.46	33.67	39.61
R129	Booster seat 1	Y	32.16	39.18	27.48	38.98
Extreme	Booster seat 1	Y	35.54	38.18	30.92	38.44
R129	Booster seat 2	Y	13.27	32.04	10.63	29.17
Extreme	Booster seat 2	Y	37.58	38.84	32.56	37.59

Chest loading – Implication for R129

Aim

- Aim to validate proposed chest deflection thresholds
 - Q3 40 mm
 - Q6 56 mm
 - Q10 56 mm
- Determine clavicle sensor threshold for Q3 & Q6

Findings

- Q10 limit seems appropriate
- Q3, Q6 thresholds not realistic
 - Chest or Clavicle deflection bottoms out before limit can be reached
 - Q3 needs dummy modification to allow more deformation without contact
 - Limits may be possible for Q6 only if an extreme belt position used

Belt path assessment

Develop static belt path assessment based on IIHS method

Use for Q3, Q6 & Q10

Too close to neck

Too wide

Conclusions

For evaluating non-integral CRSs in R129

Abdomen Loading

- Hip liner and pelvis inserts allow Q-Series dummies to submarine
- UMTRI installation method encourages submarining
- R129+ pulse increases abdomen loading
- 1.2 bar abdomen pressure limit may not be applicable for all dummies

Chest Loading

- Q10 limit seems sensible
- Q3, Q6 behaviour not realistic
- Q3, Q6 thresholds not realistic
- A static belt path assessment could be a solution to ensure poor belt routing is avoided

Do You Have Any Questions?

Thank you

Research findings for setting dummy injury thresholds for Regulation 129 Phase 2

Prepared by Mark Pitcher and Jolyon Carroll

Email: mpitcher@trl.co.uk

