6th ACSF meeting Tokyo, 19-21 April 2016

Industry proposal Low Speed Systems < 60 kph Category B2

5.6.1.1.4.1 The specified maximum lateral acceleration aysmax shall not have a value of more than 3 m/s2. Additionally, in case $v_{S,max}$ is greater than 60 km/h, $a_{yS,max}$ shall not be less than 1 m/s².

Justification:

The range of recommended design speeds in km/h on international roads is as follows:

Motorways	Х	80	100	120	140
Express roads	60	80	100	120	X
Ordinary roads	60	80	100	X	X

Design speed (km/l	1)	60	80	100	120	140
Minimum radii in plane (corresponding to maximum superelevation 7%)		120	240	450	650	1 000
Maximum gradient (percentage exceeded)*	recentage not to be 8 7 6 5		5	4		
Maximum longitudinal gradie tunnels**	nt in new	5	5	5	5	5
tunnels** Minimum radii at the highest point of the vertical alignment (in m)	One-way	1 500	3 000	6 000	10 000	18 000
	Two-way	1 600	4 500	10 000	-	-
Minimum radii at the lowest point of the vertical alignment		1 500	2 000	3 000	4 200	6 000

Source: ECE-TRANS-SC1-384e - EUROPEAN AGREMENT ON MAIN INTERNATIONAL TRAFFIC ARTERIES (AGR)

Vsmax:

30 km/h: radius 240m = lateral acceleration is 0,289 m/s²

30 km/h: radius 650m = lateral acceleration is 0,107m/s²

60 km/h: radius 240m = lateral acceleration is 1,158m/s²

60 km/h: radius 650m = lateral acceleration is 0,428m/s²

➤ Simplified calculation excluding e.g. Gradient

Conclusions:

- A low speed in a typical curve that can be found of a motorway will generate very low decelerations.
- Such low values of lateral acceleration (e.g. 0.2 m/s²) are very difficult to measure.
- From a practical standpoint, and given the lower criticality of the function at low speed (e.g. for a traffic jam assist), industry sees no necessity to define a minimum value for the lateral acceleration for maximum speed lower than 60km/h.

Neccesity of Tests for low speed systems Vsmax < 60 km/h

	aim	track (for the fuctional phase of the test)	speed v (for the functional phase of the test)	lateral acceleration ay (for the functional phase of the test)	e
<u>Tests for category E</u> FU1 Lane keeping	check lane keeping functionality within system boundaries	curved to deliver range for v and ay	varying between vsmin and vsmax - 10km/h	varying between 0.5 m/s² and 90% of aysmax	necessary, but with lower /other value of lateral acceleration
FU2 Abort of lane change	check if willingness for lane change is aborted if motorcycle approaches from behind		the lower of 80 km/h or vsmax - 20 km/h L3: 50 km/h above this value	la	ot necessary, no ne change on B2 g. traffic jam assist
FU3 Lane change	check double lane change functionality	straight, 2 lanes	the lower of 80 km/ h or vsmax - 20 km/h	-	
TR1 Lateral acceleration exceeded	check transition demand and MRM in case of a curve being too tight	straight + curved to deliver appropriate ay	the lower of 80 km/h or vsmax - 10 km/h	3.5 m/s ² bc	ot necessary, the system nundary of max. lateral celeration of this stems is 1 m/s ² Highways
TR2 Missing marking	check transition demand and MRM in case of a missing lane marking	curved to deliver ay and with one lane marking missing in a section of min. 150 m	vsmax - 10 km/h	a value between 0.5 m/s² and 90% of aysmax	necessary, but with lower /other value of lateral acceleration

Lateral accelerations from slide 2:

Vsmax:

30 km/h: radius 240m = lateral acceleration is 0,289 m/s²
30 km/h: radius 650m = lateral acceleration is 0,107m/s²
60 km/h: radius 240m = lateral acceleration is 1,158m/s²
60 km/h: radius 650m = lateral acceleration is 0,428m/s²

> Simplified calculation excluding e.g. gradient

Neccesity of Tests for low speed systems Vsmax < 60 kph

	TR3 Driver not available	check transition demand and MRM if driver does not show appropriate actions	curved to deliver ay	vsmax - 10 km/h	a value between 0.5 m/s ² and 90% of aysmax	necessary, but with lower /other value of lateral acceleration	
	TR4 Failure	check transition demand, failure warning and MRM in case of a single sensor failure	curved to deliver ay in a section of min. 200 m	vsmax - 10 km/h	a value between 0.5 m/s ² and 90% of aysmax		
	TR5 Taking over steering task by driver	check abortion of MRM after a single sensor failure in case of driver override	curved to deliver ay in a section of min. 200 m	vsmax - 10 km/h	a value between 0.5 m/s² and 90% of aysmax		
→ •	EM1 Moving target (decel. 6 m/s²)	check protective braking in case of danger of collision due to braking vehicle ahead	straight, adjacent lanes blocked	the lower of 80 km/h or vsmax - 10 km/h	[50 kph], reflectin	Not necessary for systems Vsmax < [50 kph], reflecting the Issue "measurability acceleration of 6 m/s²	
<u> </u>	EM2 Stationary target	check protective braking in case of danger of collision with stationary object ahead	straight, adjacent lanes blocked	vsmax - 10 km/h	-	necessary	

Lateral accelerations from slide 2:

Vsmax:

30 km/h: radius 240m = lateral acceleration is 0,289 m/s 2 30 km/h: radius 650m = lateral acceleration is 0,107m/s 2 60 km/h: radius 240m = lateral acceleration is 1,158m/s 2 radius 650m = lateral acceleration is 0,428m/s 2

> Simplified calculation excluding e.g. gradient

5.6.1.4.2.3

In case of a sudden unexpected event without imminent danger of a collision a transition demand shall be given immediately and the system shall follow the initial path and shall not cross any lane marking for at least [4 s] after the transition demand, in the following cases

- if the speed of the vehicle with activated ACSF exceeds vsmax + 5 km/h, or a transition demand shall be given immediately and the.
- if the vehicle with activated ACSF [with Vsmax higher than 60 km/h] and reaches a lateral acceleration of more than aysmax, or 3 m/s² a transition demand shall be given.
- if a system boundary is reached due to a missing lane marking, or
- if a single sensor failure occurs.

Justification:

For a lateral acceleration of 3 m/s 2 , the radius must be lower than 92m. The maximum lateral acceleration is lower than 1,2 m/s 2 for low speed systems (Vsmax is 60 km/h or lower).

Lateral accelerations from slide 2:

Vsmax:

30 km/h: radius 240m = lateral acceleration is 0,289 m/s²
30 km/h: radius 650m = lateral acceleration is 0,107m/s²
60 km/h: radius 240m = lateral acceleration is 1,158m/s²
60 km/h: radius 650m = lateral acceleration is 0,428m/s²

> Simplified calculation excluding e.g. gradient