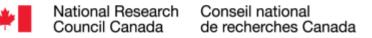
NCCNC


EV battery pack burn using Gasoline

Dean D. MacNeil

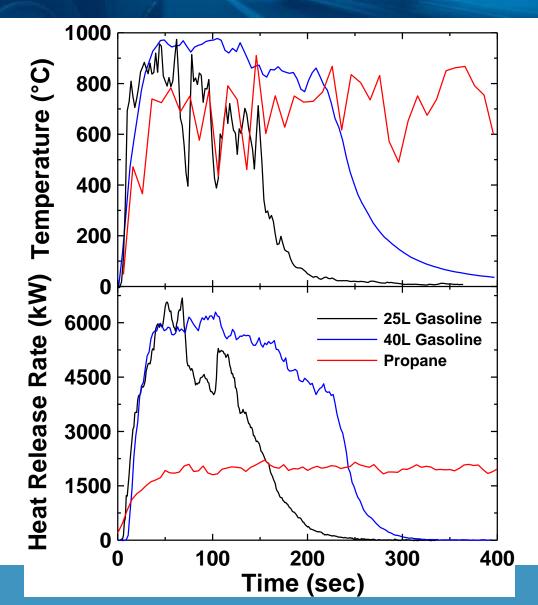
Senior Research Officer Energy, Mining and Environment – Ottawa 613-990-1769

Co-authors : NRC : Steven Recoskie, Oltion Kodra, Giulio Torlone, Ryan Kroeker; Transport Canada : Ghislain Lalime

Presentation to the 10th EVS-GTR Meeting, Tokyo, Japan March, 2016

Introduction

- Previous work by Canada concentrated on exposure of cells, packs and EVs to an external fire source, using a controlled (consistent 2 MW burner) propane fuel source
- There was discussion within previous TF meetings as to whether gasoline should be used as the fuel
- To provide the GTR with data as to whether there is a difference when gasoline is used as a fuel instead of propane, lithium-ion packs from our thermal propagation study, that were not fully consumed, were burned with 40L of gasoline prior to disposal.

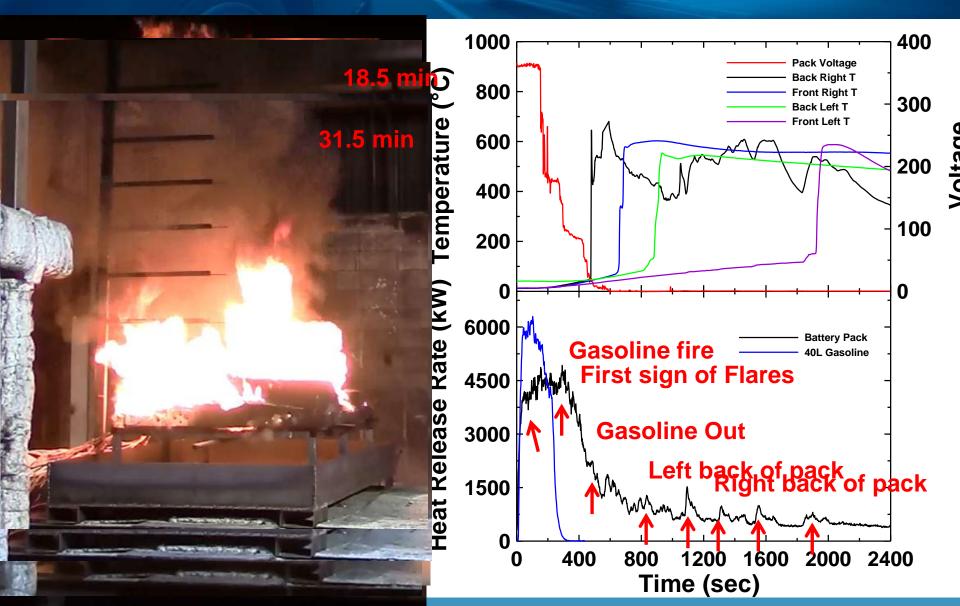

Objectives and Goals

- Compare the results of burning an EV battery pack with Gasoline versus propane
- 40L of regular Canadian winter grade unleaded gasoline was used
- Gasoline was placed in the pan above a small pool of water to ensure adequate dispersion of the gasoline

Baseline Test

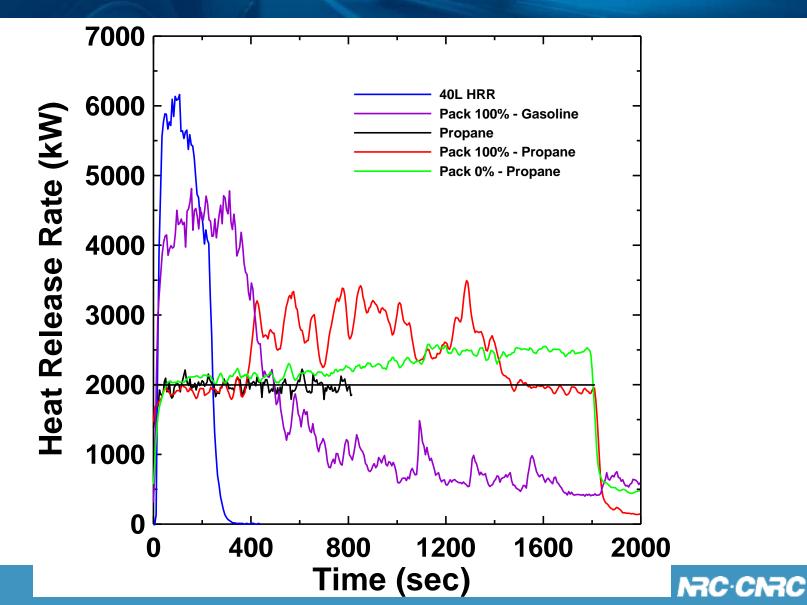
NRC CNRC

- A thermal propagation test was conducted on a commercial EV battery pack
- No thermal runaway event was detected from either heater installed within pack
- The highest recorded cell surface temperature was 532°C
- Before disposal of the pack, 40L of gasoline was added to the pan underneath the pack on a ~3 cm layer of water
- The highest recorded temperature within the pack before initiation was 65°C with an average of 13°C



NRC CNRC

- A thermal propagation test was conducted on a commercial EV battery pack
- A thermal runaway event was detected at both heaters installed within the pack, but propagation did not occur passed the 4 cells in each of the sub-module where the heater was located.
- The remaining cells in the pack were not affected.
- Before disposal of the pack, 40L of gasoline was added to the pan underneath the pack on a ~3 cm layer of water
- The highest recorded temperature within the pack before initiation was 69°C with an average of 32°C



Comparisons

Battery Pack	Initial Weight (kg)	Mass Loss (kg)	Peak Heat Release Rate (kW) (non-fuel)	Total Heat Release (MJ)	Effective Heat Combustion (kJ/g)
EV – A #1 (100% charged) Propane	299	58	1656	1045	18.0
EV – A #2 (0% Charged) Propane	310	50	582	916	18.3
EV – A #3 (100% charged – 8 cells) 40L Gasoline	277	48	4900	1227	25.6
EV – C #1 (100% charged) 40L Gasoline	242	56	5700	1217	21.7

RCCRC

Comparison Propane versus Gasoline Fuel

Conclusions and Take away message

- Canada has shown pack level fire testing using both LPG and Gasoline as fire source
- Irrespective of fuel source, the time for temperature to rise inside the pack varies depending on pack construction
- 2 min is not a sufficient exposure time for a battery pack level test, let alone a vehicle level test
- Gasoline presents high heat flux at the initial stages of testing but battery packs still have elevated reactivity at test times greater than 30 min for some battery packs

Acknowledgements

 The authors gratefully acknowledge financial support for this project from Transport Canada through its Motor Vehicle Standards - Research and Development Branch, ecoTechnologies for Vehicles Program and the National Research Council through its Vehicle Propulsion Technologies Program

Thank you for your kind attention!

Any Questions or Comments

