Thermal propagation

- Korean proposal -

EVS-GTR TF#8 meeting in Washington Jun 15, 2016

Introduction

Case study: Passenger car thermal propagation test

Correlation test: Bus thermal propagation test

Correlation of test results

II. Proposal

Thermal runaway

Initiation method

Summary

Introduction

DUT Level and criteria

- As the target is to achieve safety performance of the vehicle, it is necessary to evaluate at vehicle level.
- However, it takes a lot of resources to test at vehicle level
- As an alternative, test can be conducted in module or system level to estimate the hazard level with real vehicle test.
- → The correlation of hazard level/safety performance between real vehicle level and module/system level should to be investigated
- Correlation test and case study
 - Purpose: Test data for correlation between battery and vehicle hazard level
 - Available data

		Cell	Module	Pack		Vehicle
Single cell abuse test:		Certification data: QC/T, GB/T				
Nail penetration, Overcharge,	•	Manufacturer's in				
Short circuit, Crush		Manufacturer's b				
Heat propagation test by heater	•	③ Bus Test				
						② Passenger

 $[\]rightarrow$ Based on the correlation test data ①,②,③, the correlation between battery and vehicle hazard level were investigated

Case study: 2 Passenger car thermal propagation test

- Internal fire test (Presented at AABC Symposium 2015 June)
 - DOT/NHTSA/SAE Cooperative research project
 - Test executed by TUV-SUD
 - Purpose: Support xEV vehicle safety standard by providing practical test method and results database

	Test condition				
Initiation method	Partial heating: replacing one cell in module with heater or install heaters at cell top/bottom ** heating method is dependent on battery cell/module design & type.** ** type: Cell Partial heating: replacing one cell in module with heater Cell Partial heating: replacing one cell in module with heater Cell Partial heating: replacing one cell in module with heater Cell Partial heating: replacing one cell in module with heater Cell Partial heating: replacing one cell in module with heater Cell Partial heaters Cell				
Test method	 DUT: module, pack, vehicle including heater Preheating : Operating condition(5pt over 40°C) Initiation : continue heating until single cell thermal runaway. Real time based cabin temp, evolving gas measurement. 				
Heater power	Power : 2~12kW ** Calculated based on MATLAB model Targeted temp control range: 550~630°C(< Al melting point)				
Instrumentation	Vehicle : in/outside temp, toxic gas(CH4, CO) concentration Pack : Voltage, Temp in/outside Cell : Voltage, Temp				

Case study: 2 Passenger car thermal propagation test

Test result

<Time to first smoke/flame>

<T50:time to 50°C at driver headrest>

Summary

- Time to first smoke and flame:
- ① BEV : all safety event were after 20 min
 → enough time for occupant to escape
- ② The hazard occurrence speed of BEV is slower than that of HEV/PHEV
- ightarrow Other vehicle design parameters are more important than the amount of battery energy
- * HEV/PHEV battery pack is generally located behind rear seat, while EV battery is located underneath the underbody.

Time to HEV		PHEV	BEV
Smoke	3min	2~4min	2~22min
CO gas	~10min	~10min	Not measured
Flame	-	4~10min	43~58min
T50	-	8~145min	48~65min

Correlation test: 3 Bus thermal propagation test

Cell	Module	Pack
Validity of initiation methodSafety event severity by heater power	- Thermal propagation speed and pattern in module structure	- Propagation speed and pattern between adjacent modules
Cell T/C #1 Heater T/C #1 Heater bowner supply & Lemper ature controller Temper ature controller Temper ature controller	Thermal propagation Heater	Thermal propagation

Vehicle

- Propagation speed to cabin area in real vehicle condition

- Observe propagation speed and pattern by step test for each cell-module-pack-vehicle level.
- Define relationship between vehicle and sub-component thermal propagation test result and develop module pack heat propagation test condition/criteria

Correlation test: 3 Bus thermal propagation test

BUS test

- ◆ Each DUT level, cell, module/pack and vehicle, were tested
 - ✓ Cells/batteries did not result in explosive safety event.
 - ✓ Forced thermal runaway on cell was propagated into total system and resulted in total vehicle burning.
 - ✓ Enough time for occupants to escape was secured.
 - Hazard indicator; fire in cabin and 50°C in cabin observed at 30~40min. after initiation
 - It was not resulted in catastrophic thermal event like explosion even though it was propagated.

lla.	d	TFV	TLV	TFF	TFE	TE	TGD	T50 ℃
Hazard Indicator Time to		Time to First Vent	Time to Last Vent	Time to First Flame	Time to Flame End	Time to Explosion	Time to Gas Detect(~50ppm)	Time to 50℃ at cabin
	Α	7min	36min	8min	55min	NA	NA	NA
Module	В	7min	21min	10min	-	NA	NA	NA
	15kWh	6min	26min(HT module) 55min(Pack)	23min	65min	NA	NA	NA
Раск	Pack 45kWh	7min	36min(HT module) 150min(Pack)	(105min) Wooden tray	160min	NA	NA	NA
(Initia	hicle tion on h pack)	7min	21min(HT module) 27min(HT pack) 60min ↑ (Packs) 100min ↑ (Veh)	25min (Outside low) 32min(cabin)	125min	NA*	7min 12min(smoke)	35min

Correlation of test results

Total propagation Passenger car and battery test Flame observed of Module with initiator 1st Smoke 5min 10min 15min 35min 40min 20min 25min 30min Module **Battery** (cyl. cell) EV (3) **PHEV** Car **HEV** No fire **Bus and battery test Vehicle** Bus 15kWh Pack 15kWh **Battery** Fire on wooden trav Module

> Time to flame

- ① Module test: Fire observed right after thermal propagation.

 Pack test: Time to first flame delayed. Depending on system design and energy contents inside the system, the fire can be prevented
- ② Time to first flame in pack and vehicle level match each other.
- ③ Time to first flame is different depending on system/vehicle design.
 - ← The system/vehicle design is important

Correlation of test results

- Test case comparison
 - EV Bus
 - Passenger car
 - 6 passenger car(Cell type not defined)

Prismatic cell

Cylindrical cell

Cell type not defined

- Potential target is "no fire within 5min after initiation of thermal runaway" in system/vehicle test. (initiation of thermal runaway should be detected by alarm system).

 And no rupture and no explosion.
- ** Test result of PHEVs may be related with the location of battery system.

Introduction

Case study: Passenger car thermal propagation test

Correlation test: Bus thermal propagation test

Correlation of test results

II. Proposal

Thermal runaway

Initiation method

Summary

Thermal runaway

Definitions

- Thermal runaway is uncontrolled increase of cell temperature rise rate caused by exothermic chain reactions inside the cell.
- → Phenomena: ① Voltage drop ② Rapid temperature rise rate increase
 - ③ Thermal event(smoke/fire/explosion)

Judgment criteria for existence of thermal runaway

- ① Voltage drop &
- ② Rapid temperature rise rate increase : 20 °C/min &
- ③ Max cell temperature ≥ 200 °C

Thermal runaway

Cell test data: Initiation of thermal runaway

Test condition

- Heater : Block heater 3~5kW

- DUT temp: RT

- Heating condition

.400 °C in 5min

.Heater off after thermal event

Top view

Cell Vent

Cell-Al

Heater

Cell-Heater

Test results

		Temp rise r	rate[°C/min]	Max temp[°C]	
Cell	Test method	Before initiation	After initiation	Before initiation	After initiation
1	Heating	4.8	61	66.1	241.1
2	Heating	16.4	374	131	381.5
3	Heating	10.0	> 400	70.2	706
4	Heating	6.8	475.9	50.6	471.6
5	Heating	14.0	182.4	53.3	512.6

Thermal runaway

Judgment criteria for thermal runaway

Temperature rise rate vs Cell max temperature

- Temp increase rate ≥ 20 °C/min
 - .It should be more than the one by heating device.
- Maximum temperature ≥ 200 °C
 - .Onset temp of thermal runaway should be higher than initiation temperature.

Initiation method

Initiation method

Scope

✓ According to current scope, initiation test method shall be described in detail.

Heating

Penetration

Steel nail, Φ8, 1mm/sec

Overcharge

1C, 18V, until 200% SOC Protection device to be altered

Summary

Summary of Korean proposal

		Proposal	Remark
Init	iation method	Based on OEM and manufacturer agreement	
	Heating	Heat up to $400^\circ\mathbb{C}$ within 5min Until thermal runaway or cell temp > $400^\circ\mathbb{C}$ in 30min	Detail test method used should be described in the test report.
	Penetration	Steel, Φ8, 1mm/sec	
	Overcharge	1C, 18V, until thermal runaway or 200% SOC Protection device altered	
Loca	tion of initiator	where propagation most likely occurs (center of DUT)	
Aml	pient condition	Room temperature Indoor facility or in a shelter	
Cooling system		Equipped but not operating	
Thermal runaway		Cell temperature rise rate \geq 20 $^{\circ}$ C/min & Max cell temp \geq 200 $^{\circ}$ C	
Requirement		No external fire in 5min after alarm system operating, no rupture and no explosion	

Appendix

Heating devices and heating speed

- 1. Block heater
- Purpose : Fast reaction and thermal runaway
- Remark
 - .High power (2~5kW)
 - .Fast/forced initiation, regardless of cell design
 - .Less preheating of adjacent cell before initiation
 - .Low conduction efficiency for cylindrical cell
 - .Replacement of a cell needed

- 2. Coil/film heater
- Purpose : Steady reaction and thermal runaway
- Remark
 - .Low power (<200W)
 - .Forced initiation, regardless of cell type
 - .More preheating of adjacent cell before initiation
 - .No replacement of a cell needed

Both of two phenomena, fast/steady reaction, are existing failure modes by an internal short circuit.