ACEA
EV Postprocessing For WLTP Phase 2

FOR SG EV MEETING, $25^{\text {TH }}$ OF APRIL 2016

PARIS

EV POSTPROCESSING FOR OVC-HEV

Note:

The AER interpolation first has to be checked with a criteria that depends on $\mathrm{R}_{\text {CDA }} \rightarrow$ slide for CD \& CS merging Same $\mathrm{n}_{\text {ven } _}$and $\mathrm{n}_{\text {veh } _}$is necessary if more than one charge-depleting test shall be averaged.
UF coefficients not shown in this figure, but of course necessary.

$E_{n=1}^{E} \mid E V P O S T P R O C E S S I N G ~ O V C-H E V ~ C D+C S(1) ~$

$E \mid E V$ POSTPROCESSING OVC-HEV CD+CS(2)

EV POSTPROCESSING FOR PEV (STP)

気|EV POSTPROCESSING PEV (STP)

step 1	Determination of used electric energy $\Delta \mathrm{E}_{\text {REESS }, \mathrm{s}, \mathrm{p}}$, driven distances $d_{\text {driven,s,p}}$, usable battery energy UBE and recharged energy E_{AC}
step 2	Calculation of weighting factors
step 3	Calculation of electric energy consumption (@REESS)
step 4	Calculation of pure electric range
step 5	Calculation of electric energy consumption (@ mains)
step 6	Averaging of tests and declared value
step 7	Adjustment of electric energy consumption for COP
step	Final results (vehicle low and high) for the interpolation and intermediate rounding
step 9	Interpolation for individual vehicle values

Thank you for your attention
www.acea.be

