1

Study on Normalization method for HEV < preliminary report >

EV-SG, WLTP-IWG 25 April 2016 Prepared by JAPAN 1. Background

2. The applicability for HEV vehicle

- 2.1. Test condition & Test procedure
- 2.2. Test Results (CS condition)
- 2.3. Summary (CS condition)
- 2.4. Test Results (CD condition)
- 2.5. Summary (CD condition)
- 3. Next Actions

Reference

R1. Previous study by TUG

- R2. Detailed data (CS testing)
- R3. Detailed data (CD testing)

1. Background

- In order to run the efficient test, some tolerance and flexibilities are allowed in all test procedure, such as speed, road load, temperature and so on.
- Some of these tolerance and flexibilities have an impact on emissions and fuel consumption.
- Technical University of Graz (TUG) have developed the "Normalization method" for ICE vehicles to compensate the deviations against the target values (see reference R1).
- The effects of Normalization method have reported in the 8th WLTP-IWG as "WLTP-08-37e"
- No further study is done for HEV(Hybrid Electric Vehicles)

2.1 Test condition and Test Procedure

Test vehicle:

➢ OVC-HEV (Toyota PRIUS-PHV)

Driving style & # of Test:

Normal	Smooth- Smooth	Rough-Rough	Smooth-Rough	Rough-Smooth	
n = 2	n = 1	n = 1	n = 1	n = 1	

2.1 Test condition and Test Procedure

Japan Automobile Research Institute

♦ 4 phase [LMHxH]

♦CO2 values are varied in the range of -10% to +15%

Comparison of the veline coefficient

Driving style	Veline coefficient
Normal-1	0.206
Normal-2	0.204
Smooth-Smooth	0.205
Rough-Rough	0.205
Smooth-Rough	0.202
Rough-Smooth	0.205

◆ The veline coefficient is identical with regardless of driving style

- Maximum deviation was reduced from 14.7 to 8.1 g/km.
- The deviation between normal driving and smooth-smooth driving was reduced from 5.0 to 2.1 g/km.
- The deviation of two normal driving data was 0.3 g/km.

Phase	_	Measured data	SOC correction		Speed correction		Distance correction		RL correction 💥	
	l est condition	CO ₂	ΔCO_2	CO ₂	ΔCO_2	CO ₂	ΔCO_2	CO ₂	ΔCO_2	CO ₂
		(g/km)	(g/km)	(g/km)	(g/km)	(g/km)	(g/km)	(g/km)	(g/km)	(g/km)
LMHxH	Normal-1	98.74	-0.07	98.68	-0.03	98.65	-0.14	98.50	-0.09	98.41
	Normal-2	98.36	-0.02	98.34	-0.02	98.32	-0.13	98.19	-0.21	97.97
	Smooth-Smooth	93.41	0.07	93.47	2.95	96.42	-0.38	96.05	0.67	96.71
	Rough-Rough	107.59	0.63	108.21	-3.68	104.53	0.61	105.14	0.76	105.90
	Smooth-Rough	99.58	0.58	100.15	0.54	100.70	-0.10	100.60	0.40	100.99
	Rough-Smooth	99.00	0.03	99.03	1.34	100.37	0.21	100.57	0.33	100.90
Standard Deviation (g/km)		4.6	-	4.8	-	2.8	-	3.1	-	3.3
Differenc between MAX and MIN (g/km)		14.2	-	14.7	-	8.1	-	9.1	-	9.2

%used RL value after CD test

Effects of Normalization method (3 phase)

- Maximum deviation was reduced from 18.1 to 11.5 g/km.
- The deviation between normal driving and smooth-smooth driving was reduced from 6.0 to 2.9 g/km.
- The deviation of two normal driving data was 0.3 g/km.

it was a ster CD test manual manua manual manua manual manual manual manual manual manual ma

Phase	—	Measured data	SOC correction		Speed correction		Distance correction		RL correction 💥	
	l est condition	CO ₂	ΔCO_2	CO ₂	ΔCO_2	CO ₂	ΔCO_2	CO ₂	ΔCO_2	CO ₂
		(g/km)	(g/km)	(g/km)	(g/km)	(g/km)	(g/km)	(g/km)	(g/km)	(g/km)
	Normal-1	85.23	2.55	87.78	-0.01	87.77	-0.14	87.63	-0.04	87.60
	Normal-2	84.79	2.70	87.49	0.03	87.52	-0.13	87.40	-0.15	87.25
	Smooth-Smooth	77.80	3.63	81.43	3.16	84.59	-0.40	84.19	0.72	84.92
	Rough-Rough	95.47	4.07	99.54	-3.49	96.05	0.58	96.63	0.77	97.41
	Smooth-Rough	85.69	4.39	90.08	0.83	90.91	-0.14	90.78	0.49	91.27
	Rough-Smooth	85.76	2.30	88.06	1.61	89.68	0.17	89.85	0.46	90.30
Standard Deviation (g/km)		5.6	-	5.9	-	3.9	-	4.2	-	4.4
Differenc between MAX and MIN (g/km)		17.7	-	18.1	-	11.5	-	12.4	-	12.5

Japan Automobile Research Institute

 Normalization method for CS condition works same level as ICE (approximately 3g/km / 10% ASCR).

Japan Automobile Research Institute

2.3 Summary (CS condition)

- 1 Impact of driving style
 - CO2 range : -5% to 10%.
- 2 Applicability of Normalization method
 - It was observed that "normalization method" has an effectiveness to reduce the deviation of the CS test, although the deviation is still remain (approx.10 g/km)
 - It seems that the effectiveness is same level as the ICE vehicles.
 - Further study is necessary on the other HEV systems for final decision of "normalization method" applicability.
 - The vehicle specific veline coefficient in each driving style is identical.

(additional data can be found in reference R2)

All Electric Range (AER)

AERs are dramatically varied according to the driving style. (reduced by 80% when rough driving)

Charge Depleting Cycle Range (R_{CDC})

Equivalent all-electric range (EAER)

◆ The EAERs are varied by -10% to +6% even though different Rcdc.

Actual charge-depleting range (R_{CDA})

$$R_{CDA} = \sum_{c=1}^{n-1} d_c + \left(\frac{M_{CO2,CS} - M_{CO2,n,cycle}}{M_{CO2,CS} - M_{CO2,CD,avg,n-1}}\right) \times d_n$$

n is the number of applicable WLTP test cycles driven including the transition cycle %. When the Transition cycle was 1st cycle, then $M_{CO2,CD,avg,n-1}$ was considered 0.

\bullet R_{CDA} is dramatically changed when the # of CD cycle is different.

Utility factor-weighted charge-depleting CO2 (M_{CO2,CD})

- ♦ M_{CO2,CD} of the smooth-Smooth driving is 7% lower than that of the Normal driving.
- If the transition cycle is varied, $M_{CO2,CD}$ was dramatically changed.
- ◆ Impact of driving style to the M_{CO2,CD} was the range from -7% to 153%

Utility factor-weighted CO2 mass emissions (M_{CO2,weighted})

◆<u>Utility factor-weighted CO2 mass emissions M_{CO2,weighted}</u>

- ♦ M_{CO2,weighted} of the smooth-Smooth driving is 5% lower than that of the Normal driving.
- Rough-Smooth CO2 is well correlated to other driving style even though huge CO2 deviation under CD condition.

Recharged electric energy (E_{AC})

• Recharged electric energy (E_{AC}) in each test is identical (within 2%)

Electric energy consumption (EC)

◆ The ECs are varied from -7% to +10% depends on driving style

① Impact of driving style

- CO2/Range/EC : -80% to 150%.
- 2 Applicability of Normalization method
 - Due to its unique test procedure(CD condition), it was observed that "normalization method" doesn't work on most of parameters (AER, Rcdc, Rcda., CO2, EC,,)
- ③ New methodologies or Driving Index ?
 - New methodologies are absolutely necessary.
 - On the other hands, the practical lab. operation needs to be kept.
 - One of solutions is to apply "drive trace index"

(additional data can be found in reference R3)

3. Next Actions

- Asking other parties to conduct CS testing on different type of HEV system.
- ② Seek whether an appropriate correction method for CD testing exist or not.
- ③ Options to Proceed
 - ✓ <u>Option1</u> : No correction algorithm but apply drive trace index with criteria for all type of vehicles
 - ✓ <u>Option2</u> : Apply correction algorithm on only parameters which are well justified.
 - ✓ <u>Option3</u> : Develop the methodologies to take care of all parameters.

Reference

R1. Previous study by TUGR2. Detailed data (CS testing)R3. Detailed data (CD testing)

R1. Correction algorithm of Normalization by TUG

1. Correction for imbalance of battery SOC

- ✓ correct in each phase
- Two option for the correction
 - A) simple option: $W_{bat}=\Sigma U_{(t)} \times I_{(t)} \times 0.001 \cdot dt [kWs]$
 - B) detailed option: $W_{bat} = W_{bat_discharge} (W_{bat_charge} \times \eta_{bat})$ [kWs]
 - $\succ \quad \Delta CO_{2SOC} [g] = W_{bat} / \eta_{Alt} \times k_e$
 - > η_{bat}: Pb 87%, Ni-Mh 90%, Li-Ion 97%, η_{Alt}: 67%, k_e: Willans係数

2. Set up a Vehicle specific Veline function

for OVC-HEV vehicle, apply normal RCB correction (Not use Willans factor)

- ✓ Set up the vehicle specific veline function from the SOC corrected test data and average power
- ✓ Calculate average Power (if $P_{(j)} < P_{overrun}$, $P_{(j)}=P_{overrun}$)
- $\checkmark \quad \text{CO}_2 \ [g/s] = k_v \ \times \ \text{P}_{\text{wheel}} \ + \ \text{D}$
- ✓ P_{overrun} = Maximum power × 0.02 (*) for OVC-HEV: Maximum rated power of Engine

3. Correction for the deviation of the vehicle speed

- \checkmark Correct the deviation against target speed
- $\checkmark \Delta CO_{2v} [g] = \Delta W_{wheel} \times kv$
- $\checkmark \Delta W_{wheel} = (W_{w_pos} W_{pos}) \times 0.001 \text{ [kWs]}$

✓
$$W_{pos} = \Sigma P(t) \cdot dt$$
 (if $P_{(j)} < P_{overrun}$, $P_{(j)} = P_{overrun}$)

 \checkmark P = (R0 + R1 × V + R2 × V2 + ma) × V

4. Correction for the deviation of the travelled distance

- \checkmark Correct the deviation against target distance
- ✓ Consider that CO2 is not emit during deceleration (< P_{overrup})
- ✓ CO2 [g/km] = (CO_{2measured} + Δ CO_{2SOC} + Δ CO_{2v}) / 23.27

5. Correction for the deviation of road load

- \checkmark Correct the deviation against target road load
- $\checkmark \Delta CO2 [g] = \Delta W_{wheel} \times kv$

$$\checkmark \quad \Delta W_{\text{wheel}} = \Sigma (P_{p(t)} - P_{(t)}) \cdot dt$$

$$\checkmark P_{p(t)} - P_{(t)} = R_{0w} - R_0 + (R_{1w} - R_1) \times V_{(t)} + (R_{2w} - R_2) \times V_{(t)}^2$$

Develop the regression line based on the relationship between average power and CO2 in each phase

R1. Normalization method for ICE vehicle

♦Test-C

- It was observed that the normalization method tend to reduce the deviation between the tests.
 - ✓ SOC correction
 - ✓ Speed & distance correction
 - ✓ Road load correction
 - ✓ Soak temperature correction
- The CO2 value for the aggressive driving style is reduced only if 10Hz speed signals are used for the correction of speed deviations
- It was hardly to correct the aggressive driving for the vehicle with automatic transmission.
- Driving index as defined in SAE J2951 seems to be helpful to eliminate improper driver behavior.

Source: WLTP-08-37e - WLTP correction algorithms report

R2. Normal driving (Low ~ Medium)

Trace the target speed as match as possible

R2. Smooth-Smooth driving (Low ~ Medium)

Smooth acceleration and Smooth deceleration

R2. Rough-Rough driving (Low ~ Medium)

Rough acceleration and Rough deceleration

R2. Smooth-Rough driving (Low ~ Medium)

Smooth acceleration and Rough deceleration

R2. Rough-Smooth driving (Low ~ Medium)

Rough acceleration and Smooth deceleration

R2. RCB correction coefficients

K_{CO2} and K_{fuel} in each driving style is identical
Same coefficient can be used for RCB correction with regardless the driving style.

R2. Relationship between Power and CO2

R2. Drive trace index

- All Smooth-Smooth driving data and Rough-Rough driving data were varied and detected by all indexes
- Smooth-Rough driving data were detected by ASCR, RMSSE and IWR

15

15

- Rough-Smooth driving data were detected by only RMSSE
- Good repeatability
 was obtained when
 the Normal driving
 was performed

R2. Time ratio of Engine stop

Engine stop duration of Smooth-Smooth driving is longer than that of other driving styles.

R2. Charge balance

Discharge

- The discharge electricity of Smooth-Smooth driving is lower than that of other driving styles.
- The discharge electricity of Rough-Rough driving is higher than that of other driving styles.
- The charge balance of whole cycle in each driving style is close to zero.

Effects of Normalization method (each phase)

R2. Continuous data

Normal-1

Japan Automobile Research Institute

R3. The timing of first engine operation

Japan Automobile Research Institute

R3. The timing of first engine operation

38

R3. The utility factor-weighted CO2

Rough-Smooth driving Initial cycle Transition cycle Confirmation cycle (n-1) (n) (n+1) 160 ______ 車速 km/h 140 Vehicle speed Vehicle speed (km/h) 120 100 80 60 2000 5000 3000 4000 6000 7000 8000 Time (s) 80 Distance 70 Driving distance (km) 60 50 40 30 20 10 - 走行距離 km 0 3000 1000 2000 400<mark>0</mark> Time (s) 5000 6000 8000 7000 1.0 0.9 UF 0.3 0.2 0.1 0.0 1000 2000 3000 400<mark>0</mark> 5000 6000 7000 8000 Time (s) 500 change (Wh) RCB Wh -500 -1000 1500 -2000 8-2500 **Power integration** -3000 400<mark>0</mark> Time (s) 0 1000 2000 3000 5000 **6**000 7000 8000 14 CO2 g/s CO2 (g/s) 12 10

0

1000

2000

3000

4000

5000

6000

7000

◆ Example of calculation

Rough-Smooth

Cycle	Phase	CO2 UF		CO2_CD	CO2 weighted	
	Low	0	0 0.09			
	Medium	23	0.11			
CD-1	High	6	0.13			
	Extra High	78	0.12	12.0		
	Low	0	0.04	42.9	62.3	
CD-2	Medium	57	0.05			
	High	91	0.06			
	Extra High	124	0.06			
CS	LMHxX	99	-	-		
Normal						
Cycle	Phase	CO2	UF	CO2_CD	CO2 weighted	
	Low	0	0.09			
	Medium	0	0.11	16.0		
CD-1	High	0	0.13	10.9	61.9	
	Extra High	65	0.12			

 <u>The utility factor-weighted charge-depleting</u> <u>CO₂ mass emission M_{CO2,CD}</u>

99

$$M_{CO2,CD} = \frac{\sum_{j=1}^{k} \left(UF_j \times M_{CO2,CD,j} \right)}{\sum_{j=1}^{k} UF_j}$$

LMHxX

k is the number of phases driven up to the end of the transition cycle

♦ <u>Utility factor-weighted CO₂ mass emissions</u> <u>M_{CO2,weighted}</u>

$$M_{CO2,weighted} = \sum_{j=1}^{k} \left(UF_{j} \times M_{CO2,CD,j} \right) + (1 - \sum_{j=1}^{k} UF_{j}) \times M_{CO2,CS}$$

CS

R3. Phase specific EAER_p

The EAER_{p,L} are varied from -20% to +7% depends on driving style
The EAER_{p,M} are varied from -30% to +5% depends on driving style
The EAER_{p,H} are varied from -10% to +2% depends on driving style
The EAER_{p,ExH} are varied from -4% to +10% depends on driving style

R3. Phase specific Electric energy consumption $(EC_p^{2016/XX/XX})$

The EC_{p,L} was varied from -7% to +26% depends on driving style
The EC_{p,M} was varied from -6% to +41% depends on driving style
The EC_{p,H} was varied from -3% to +11% depends on driving style
The EC_{p,ExH} was varied from -11% to +5% depends on driving style

R3. Utility factor-weighted CD $EC_{AC,CD}$

$$\mathbf{EC}_{\text{AC,CD}} \quad EC_{AC,CD} = \frac{\sum_{j=1}^{k} \left(UF_{j} \times EC_{AC,CD,j} \right)}{\sum_{j=1}^{k} UF_{j}}$$

◆ The EC was varied from -35% to +3% depends on driving style

R3. Utility factor-weighted $EC_{AC,weighted}$

$$\Phi \mathbf{EC}_{AC,weighted} \qquad EC_{AC,CD} = \sum_{j=1}^{k} \left(UF_j \times EC_{AC,CD,j} \right)$$

◆ The EC was varied from -5% to +4% depends on driving style

R3. Study of the normalization method for CD test

◆ <u>The equivalent all-electric range EAER</u>

The correction didn't work appropriately.

 \blacklozenge CO2 on the CD test and R_{CDC} should be corrected.

R3. Impacts of driving style on the CS and CD test

			Test results					Rate of change compared to the mean of Normal driving (%)						
	ltem	Unit	Normal-1	Normal-2	Smooth- Smooth	Rough- Rough	Smooth- Rough	Rough- Smooth	Normal-1	Normal-2	Smooth- Smooth	Rough- Rough	Smooth- Rough	Rough- Smooth
	AER	km	15.9	15.9	15.9	3.2	16.0	3.1	0.0	0.0	0.2	-80.0	0.6	-80.4
	EAER	km	17.8	17.7	17.8	16.1	17.4	18.9	0.2	-0.2	0.2	-9.4	-1.9	6.1
	EAER,L	km	26.7	26.7	28.4	21.2	24.9	26.6	-0.1	0.1	6.5	-20.7	-6.7	-0.4
Pango	EAER,M	km	23.7	23.7	24.9	16.7	22.0	19.8	0.0	0.0	5.2	-29.4	-6.9	-16.5
Range	EAER,H	km	20.0	20.1	20.5	18.0	20.4	20.0	-0.2	0.2	1.9	-10.5	1.8	-0.3
	EAER,ExH	km	11.4	11.2	11.0	12.2	10.8	12.5	0.9	-0.9	-2.4	8.4	-4.3	10.3
	R _{CDA}	km	17.8	17.7	17.8	16.1	17.4	28.8	0.2	-0.2	0.2	-9.4	-1.9	62.2
	R _{CDC}	km	23.2	23.2	23.2	23.4	23.2	46.6	0.0	0.0	-0.4	0.6	0.0	100.6
	M _{CO2,CS}	g/km	98.7	98.3	93.5	108.2	100.2	99.0	0.2	-0.2	-5.1	9.9	1.7	0.5
	M _{CO2,CS,L}	g/km	98.2	97.6	88.6	113.7	100.1	98.9	0.3	-0.3	-9.4	16.1	2.3	1.1
	M _{CO2,CS,M}	g/km	81.9	82.0	74.8	100.3	87.3	83.8	0.0	0.0	-8.8	22.4	6.5	2.3
CO2	M _{CO2,CS,H}	g/km	87.1	86.8	82.7	92.9	87.6	86.2	0.2	-0.2	-4.9	6.8	0.7	-0.9
	M _{CO2,CS,ExH}	g/km	118.5	118.1	115.3	124.0	118.4	119.0	0.2	-0.2	-2.5	4.8	0.1	0.6
	M _{CO2,CD}	g/km	16.9	17.1	15.8	27.1	18.4	42.9	-0.5	0.5	-6.8	59.5	8.1	152.5
	M _{CO2,weighted}	g/km	61.9	61.8	58.6	71.6	63.3	62.3	0.1	-0.1	-5.2	15.8	2.5	0.7
	EC	Wh/km	164.4	164.0	162.6	180.7	168.0	152.3	0.1	-0.1	-1.0	10.0	2.3	-7.3
	EC,L	Wh/km	109.8	109.0	101.9	137.6	117.7	108.1	0.4	-0.4	-6.9	25.8	7.6	-1.2
	EC,M	Wh/km	123.7	122.9	116.3	174.3	133.0	145.3	0.3	-0.3	-5.7	41.3	7.8	17.8
EC	EC,H	Wh/km	146.1	144.8	141.6	161.9	143.4	143.6	0.5	-0.5	-2.7	11.3	-1.4	-1.3
	EC,ExH	Wh/km	256.9	260.2	262.8	237.8	271.1	230.6	-0.6	0.6	1.7	-8.0	4.8	-10.8
	EC _{AC,CD}	Wh/km	125.7	124.8	123.2	129.2	127.1	82.0	0.4	-0.4	-1.7	3.1	1.5	-34.5
	EC _{AC,weighted}	Wh/km	56.6	56.2	55.3	58.4	57.2	53.8	0.3	-0.3	-1.9	3.5	1.5	-4.6

R3. Relationship between power and CO2 in CD test^{2016/XX/XX}

- There was no relationship between average power and average CO2 during L~M~H phase in 1st cycle.
- The vehicle specific veline concept can't use for CD test.
- The coefficient of regression line of Extra High phase of 1st cycle and the coefficient of regression line of 3rd cycle is different. (can't substitute)
- It seems difficult to compensate the CO2 during CD cycle

R3. Drive trace Index of CD and CS test

CD-1, CD-2, CD-3 and CS test

Japan Automobile Research Institute

R5. Energy flow of HEV

