

Electromobility Modelling

by

P. Dilara*, A. Donati, Y. Drossinos, D. Gkatzoflias, G. Harrison, J. Krause, L. Maineri, **C. Thiel**

> European Commission, Joint Research Center, Institute for Energy and Transport

*currently at DG-GROW

Green eMotion project (GeM)

Big European Project monitoring cars in 2011-2013 in Ireland, Denmark, Sweden, Spain.

A total of 457 vehicles were nomitored on 65800 trips

Vehicle Make-Model	Number of trips with non-zero Length	Number of trips with non- zero Length and Energy Consumption
no make-no model	533	305
Citroen-Zero	141	137
Mitsubishi- i-MiEV	31,428	19,594
Peugeot-iOn	25,453	24,080
THINK-City	8,244	7,911

Is autonomy an issue? (GeM data)

1. 80% trips < 50 km/day

2. trips/day ~5 (80% of all trips)

Is parking important (GeM data)?

- 1. Frequent short stops -> fast charging?
- 2. No particular preference for time of parking (during the day). Duration?

4

Energy consumption (GeV data)

EC ~ 18.32 kWh/100 Km (based on experimental data)

➡ Used in DIONE

Power requested from the Grid per time of the day (GeM data)

Combination of slow and fast chargers, most car not privately owned.

Research

State of charge at beginning and end of charge (GeM data)

Analysis of consumption per country

Research

Next steps

- GeM data are a source of data for European Electric Vehicle Mobility
- Define what is needed from EVE in order to define typical ageing patterns
- Agree with JRC if they can do further analysis according to EVE specs

THANK YOU FOR YOUR ATTENTION.

