Electromobility Modelling

by

P. Dilara*, A. Donati, Y. Drossinos, D. Gkatzoflias, G. Harrison, J. Krause, L. Maineri, C. Thiel

European Commission, Joint Research Center, Institute for Energy and Transport

Green eMotion project (GeM)

Big European Project monitoring cars in 2011-2013 in Ireland, Denmark, Sweden, Spain.
A total of 457 vehicles were nomitored on 65800 trips

Vehicle Make-Model	Number of trips with non-zero Length	Number of trips with non- zero Length and Energy Consumption
no make-no model	533	$\mathbf{3 0 5}$
Citroen-Zero	141	$\mathbf{1 3 7}$
Mitsubishi- i-MiEV	31,428	$\mathbf{1 9 , 5 9 4}$
Peugeot-iOn	25,453	$\mathbf{2 4 , 0 8 0}$
THINK-City	8,244	$\mathbf{7 , 9 1 1}$

Is autonomy an issue? (GeM data)

1. 80% trips $<50 \mathrm{~km} /$ day
2. trips/day ~5 (80\% of all trips)

Is parking important (GeM data)?

1. Frequent short stops -> fast charging?
2. No particular preference for time of parking (during the day). Duration?

Energy consumption (GeV data)

EC $\sim 18.32 \mathrm{kWh} / 100 \mathrm{Km}$ (based on experimental data)

Power requested from the Grid per time of the day (GeM data)

Combination of slow and fast chargers, most car not privately owned.

Total power requested

State of charge at beginning and end of charge (GeM data)

Analysis of consumption per country

Next steps

$>$ GeM data are a source of data for European Electric Vehicle Mobility
> Define what is needed from EVE in order to define typical ageing patterns
> Agree with JRC if they can do further analysis according to EVE specs

THANK YOU FOR YOUR ATTENTION.

