

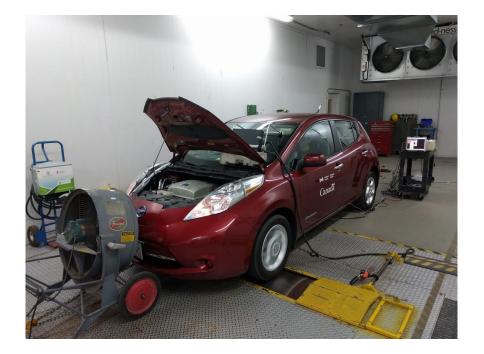
Aaron Loiselle¹, Ian Whittal², Martha Christenson² ¹Emissions Research and Measurement Section, Environment and Climate Change Canada ²ecoTECHNOLOGY for Vehicles Program, Transport Canada

Published at the 29th Electric Vehicle Symposium – Montreal, QC, June 2016

Introduction and Objectives

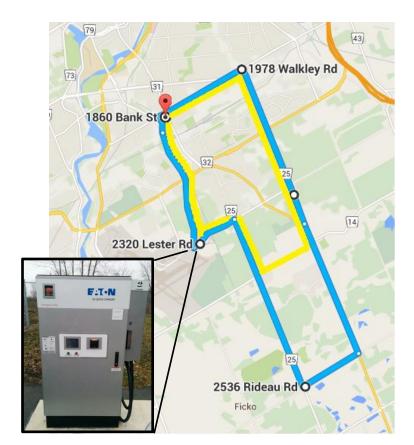
Previous Studies

- A 2012 study found reduced driving range for a BEV after mileage accumulation of 12,000km in Ottawa
- A 2015 INL/Intertek study quantified BEV battery capacity loss at between 25% and 35 % with 80,000km accumulated in a hot climate (Arizona)
 - Accelerated capacity loss with DCFC and hot ambient temperatures


Objectives of this Study

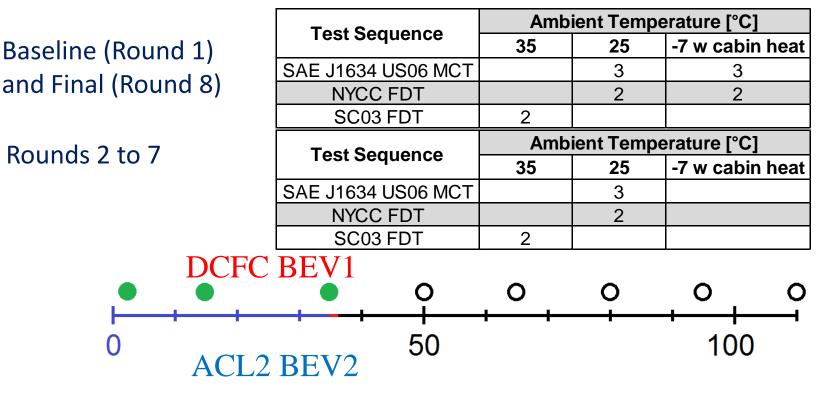
- Evaluate the impact of mileage accumulation on the usable battery energy (UBE), full-recharge energy (FRE), FRE_{DC}, range and energy consumption (ECdc) of a 2015 BEV
- Investigate how fast charging (DCFC) affects these performance metrics
- Investigate the impact of cold temperature mileage accumulation

Test Design


- 2 identical 2015 model year BEVs
 - BEV1 charged exclusively on DCFC
 - BEV2 charged exclusively on SAE AC Level 2 (ACL2)
- Simultaneous mileage accumulation (within two week margin) on-road in Ottawa
- Dynamometer testing at ~15,000km intervals until study concludes at 105,000km mileage
 - Baseline testing at 1,600km
 - Round 2 at 15,000km
 - Round 3 at 35,000km

On-Road: Accumulation Routes

- Summer Route (May Sept)
 - Distance: 33.6 km
 - Duration: 39 min
- Winter Route (Oct March)
 - Distance: 22.8 km
 - Duration: 28 min
- Daily Distance: 100 km
- Daily Charging: mid-day and overnight
- CANbus data collection


Chassis Dynamometer Test Cycles

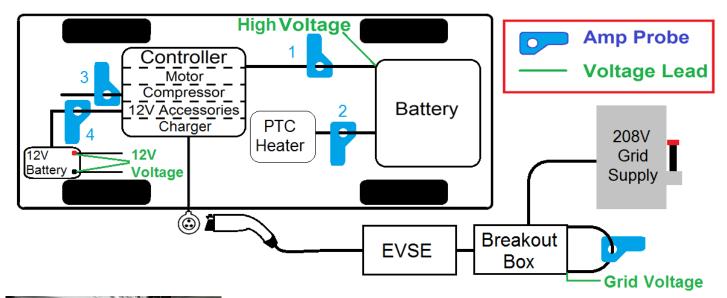
SAE J1634 US06 MCT

Test Matrix

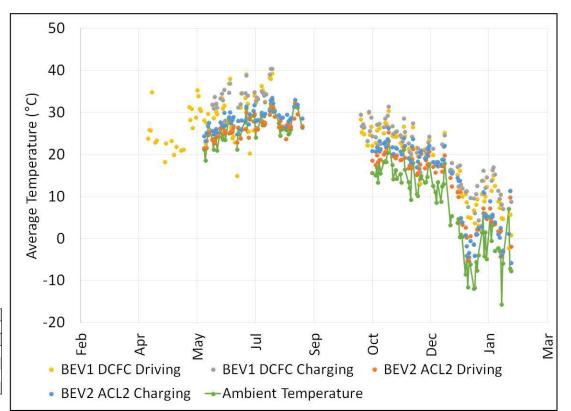
Odometer [km x 1000]

Instrumentation

- HIOKI 3930-10 high-precision power analyzer
- HIOKI clamp-on and solid-core AC/DC amp probes
- Thermocouples
- CANbus signals

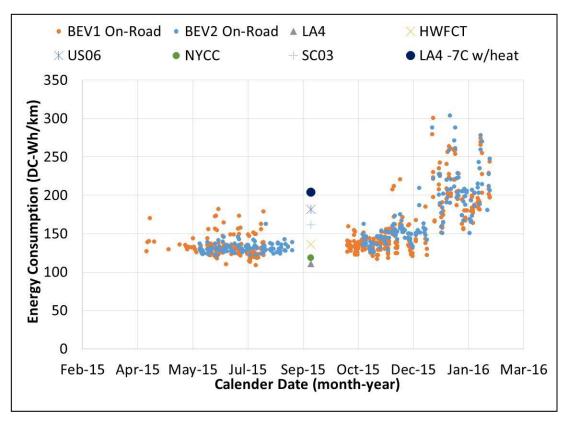


Instrumentation...cont'd



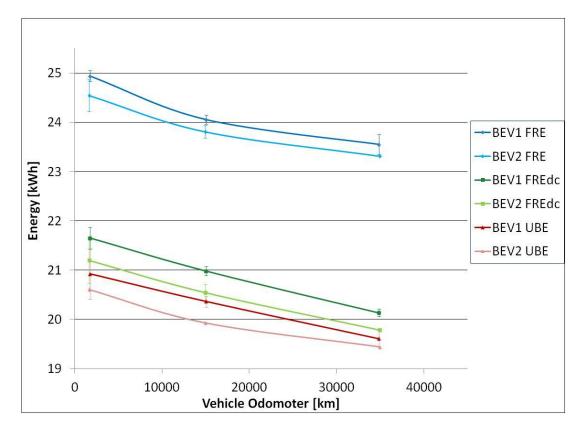
On-Road: Temperatures

- BEV1 experienced higher battery temperatures during driving and charging throughout all seasons
- During winter months, ambient temperatures reached -15°C during mileage accumulation

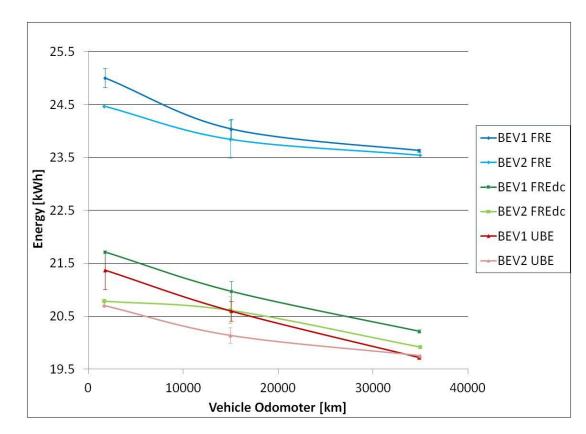

Season	Battery Temperatures [°C]			
	Charging		Driving	
	BEV1	BEV2	BEV1	BEV2
Spring (Apr-Jun)	32.94	26.88	27.61	24.79
Summer (Jul-Sep)	35.35	29.68	33.25	27.76
Fall (Oct-Dec)	23.65	20.52	22.44	18.63
Winter (Jan-Mar)	13.15	5.21	10.26	4.57

Canada

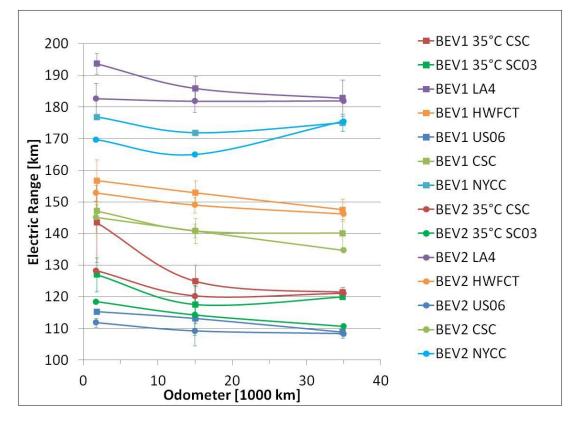
On-Road: Energy Consumption Rates


- Energy consumption (ECdc) increased by up to 2 times during the winter months
- Energy consumption rates over various cycles in-lab were comparable to on-road consumption rates between April and December.

Charging and Usable Energy at 25°C


- Some initial differences between BEV1 and BEV2
- Full recharge energy (FRE) decreased by:
 - 3% after 15,000km, and 5% after 35,000km for BEV2 (ACL2)
 - 4% after 15,000km, and 6% after 35,000km for BEV1 (DCFC)
- Usable battery energy (UBE) decreased by 3% after 15,000km and 6% after 35,000km for both BEV1 and BEV2
- Trends were similar for DCFC and ACL2

Charging and Usable Energy at 35°C


- Some initial differences between BEV1 and BEV2
- Full recharge energy (FRE) decreased by:
 - 3% after 15,000km, and 4% after 35,000km for BEV2 (ACL2)
 - 4% after 15,000km, and 5% after 35,000km for BEV1 (DCFC)
- Usable battery energy (UBE) decreased by:
 - 3% after 15,000km and 5% after 35,000km for BEV2 (ACL2)
 - 4% after 15,000km and 8% after 35,000km for BEV1 (DCFC)

Canada

Driving Range

- Range is based on UBE, and cycle energy consumption rate (ECdc)
- Some initial differences between BEV1 and BEV2
- On HWFCT, US06, and CSC range decreased by:
 - 2-3% after 15,000 km and 3-7% after 35,000km for BEV2 (ACL2)
 - 2-4% after 15,000 km and 5-6% after 35,000km for BEV1 (DCFC)
- Results varied for other cycles

Summary

- Charging energy and usable battery energy decreased at 35,000 km compared to baseline
 - FRE decreased by 5% (BEV2) and 6% (BEV1) at 25°C, and 4% (BEV2) and 5% (BEV1) at 35°C
 - UBE decreased by 6% for both vehicles at 25°C, and 5% (BEV2) and 8% (BEV1) at 35°C
- Driving range varied with mileage accumulation
 - Decreased driving range on HWFCT, US06, CSC after 35,000 km (3-7%)
 - Varied results on urban routes
 - Some leveling off after 15,000 km testing
- Mileage accumulation will continue to 100,000km

Acknowledgements

- Staff of the Emissions Research and Measurement Section for conducting dynamometer testing
- Dominique-Pierre Dion and staff of the eTV Program for managing on-road mileage accumulation
- Funding provided by:
 - Natural Resources Canada PERD (Project EM9)
 - Transport Canada's eTV Program
 - Environment and Climate Change Canada

Thank You!

*

Transport Transports Canada Canada

Environment and Climate Change Canada Environnement et Changement climatique Canada

Contact:

Aaron Loiselle-Lapointe aaron.loiselle@canada.ca

Ian Whittal Ian.whittal@tc.gc.ca

Martha Christenson martha.christenson@tc.gc.ca

Photos: Michel Jouvenier

