

EURO 5 EFFECT STUDY FOR L-CATEGORY VEHICLES

UN L-EPPR October 2016

innovation for life

PROJECT OUTLINE

- Tender ID:
 - > Title: Euro 5 Effect study for L-category vehicles
 - > Tender No: 465/PP/GRO/IMA/15/11825
 - Contract No: SI2.713570
 - Client: European Commission DG-GROWTH

• Consortium performing the work:

- > TNO The Netherlands
- > EMISIA Greece
- > Laboratory of Applied Thermodynamics (LAT) Greece
- > Heinz Steven Data Analysis and Consultancy (HSDAC) Germany

MAIN REQUIREMENTS OF THE STUDY

- Perform an experimental assessment and verification programme to underpin Euro 5 stage.
- Assess the feasibility and cost-effectiveness of possible post Euro 5 elements:
 - > in-service conformity testing requirements
 - **off-cycle emission** requirements
 - Expand PM limit scope and introduction of a PN emission limit for certain (sub-)categories of L-category vehicles.
 - > A cost-benefit analysis is currently on going in these issues
- This presentation contains the preliminary conclusions on the introduction of the Euro 5 limit in 2020

DIFFERENT PHASES OF THE STUDY

EURO 5 LIMIT INTRODUCTION IN 2020

TECHNOLOGY AND ENVIRONMENTAL ASSESSMENT

EMISSION LIMITS (REGULATION (EU) 168/2013)

Euro 4	Vehicle category	Vehicle category name	Propulsion class	Euro level	Mass of carbon monoxide (CO)	Mass of total hydrocarbons (THC)	Mass of oxides of nitrogen (NO _x)	Mass of particulate matter (PM)	Test cycle
					L ₁ (mg/km)	L ₂ (mg/km)	L ₃ (mg/km)	L ₄ (mg/km)	
	L1e-A	Powered cycle	PI/CI/Hybrid	Euro 4	560	100	70		ECE R47
	L1e-B	Two-wheel moped	PI/CI/Hybrid	Euro 4	1 000	630	170	—	ECE R47
	L2e	Three-wheel moped	PI/CI/Hybrid	Euro 4	1 900	730	170	—	ECE R47
	L3e	3e — Two-wheel motorcycles with and 4e (⁷) without side-car 5e-A — Tricycle — Heavy on-road guad	PI/PI Hybrid, v _{max} < 130 km/h	Euro 4	1 140	380	70	—	WMTC, stage 2
	LTec() without side- L5e-A — Tricycle L7e-A — Heavy on-roa		PI/PI Hybrid, v _{max} ≥ 130 km/h	Euro 4	1 140	170	90	—	WMTC, stage 2
		inary on road quad	CI/CI Hybrid	Euro 4	1 000	100	300	80 (⁸)	WMTC, stage 2

	•	,
1	C	2
1	È	
	_	3
L	I	

Vehicle category	Vehicle category name	Propulsion class	Euro Level (⁴)	Mass of carbon monoxide (CO)	Mass of total hydro- carbons (THC)	Mass of Non-methane hydrocarbons (NMHC)	Mass of oxides of nitrogen (NO _x)	Mass of particulate matter (PM)	Test cycle
				L ₁ (mg/km)	L _{2A} (mg/km)	L _{2B} (mg/km)	L ₃ (mg/km)	L ₄ (mg/km)	
Lle-A	Powered cycle	PI/CI/Hybrid	Euro 5	500	100	68	60	4,5 (⁹)	Revised WMTC (¹⁰)
Lle-B-L7e	All other L-category vehicles	PI/ PI Hybrid	Euro 5	1 000	100	68	60	4,5 (⁹)	Revised WMTC
		CI/CI Hybrid		500	100	68	90	4,5	Revised WMTC

WHERE CURRENT TYPE APPROVAL VALUES STAND

Already ~40% of L3e TAs comply Euro 5 numerical HC/NOx limits CO compliance reaches 96%

Source: Sept. '16 Kraftfahrt-Bundesamt L3e Type Approval data Note: Euro 5 limit uncertainty range due to 0.5/0.5 weighing factors

EXPECTED TECHNOLOGY NECESSITATED

- Motorcycles
 - > Marginally larger catalyst and/or higher Platinum Group Metals (PGM) loading
 - > Improved engine tuning for cold-start emission suppression
 - In some models: Closed-couple pre-cat + main catalyst or closer placement of main catalyst
- Mopeds
 - > Elimination of two-stroke engines
 - > Four-stroke engines with electronic fuel injection
 - > Thermally optimized three-way catalyst for fast light-off

ENVIRONMENTAL ASSESSMENT COST-BENEFIT ANALYSIS (CBA)

OVERVIEW OF CBA APPROACH

BASELINE SCENARIO FOR THE FLEET/ACTIVITY DATA

- Motorcycles: their contribution to activity dominates, mainly due to shrinkage of mopeds sector and higher mileage (annual distance driven)
- Mopeds: their contribution to activity presents a continuous decrease from 2010 to 2040
- Mini-cars and ATVs: Small overall contribution to total activity (but effects on local air quality)
 - 'Business as usual' scenario after an initial sales rebound
 - Consistent with statistical data for historical years, projections based on historical data and justified estimation of future trends

HC EMISSIONS SAVINGS BY INTRODUCING EURO 5 LIMITS

> ~509 kt HC can be saved when Euro 5 is introduced in 2020 for all L-vehicles

> ~52% emission savings over Euro 4

2020-2040 period: HC savings / Euro 4 vehicle emissions = 509kt / 979kt = 52%

~26% emission savings of the whole L-category fleet emissions 2020-2040 period: HC savings / total L-fleet emissions = 509kt / 1,950kt = 26%

NO_x EMISSIONS SAVINGS BY INTRODUCING EURO 5 LIMITS

 \sim -141 kt NO_x can be saved when Euro 5 is introduced in 2020 for all L-vehicles

~34.5% emission savings over Euro 4

2020-2040 period: NO_x savings / Euro 4 vehicle emissions = 141kt / 408.5kt = 34.5%

~25% emission savings of the whole L-category fleet emissions 2020-2040 period: NO_x savings / total L-fleet emissions = 141kt / 566kt = 25%

PM EMISSION SAVINGS BY INTRODUCING EURO 5 LIMITS

> ~6.6 kt PM will be saved when Euro 5 is introduced in 2020 for all L-vehicles

~51.5% emission savings over Euro 4

2020-2040 period: PM savings / Euro 4 vehicle emissions = 6.6kt / 12.8kt = 51.5%

~24% emission savings of the whole L-category fleet emissions 2020-2040 period: PM savings / total L-fleet emissions = 6.6kt / 27.3kt = 24%

COST BENEFIT ANALYSIS RESULTS

> Total costs of Euro 5 (not price!) per vehicle (2020-2040 period):

- Mopeds: 83 to 93 €/vehicle
- Motorcycles: 39 to 48 €/vehicle

PELIMENARY CONCLUSIONS

- Proposed Euro 5 emission limits are technically feasible to be reached by 2020
- New limits entail thermal optimization of currently available technology
 Stoichiometric combustion and three way catalyst
- Cost-benefit analysis suggests societal benefits in monetary terms exceed associated costs over a 20-year assessment period ne
- Implementation costs are marginal for motorcycles and relatively more significant for mopeds

NEXT STEPS

- Oct 2016 draft final report submitted to DG GROW
- Nov 2016 present preliminary study results to industry specialists / stakeholders
- Dec 2016 final report submitted to DG GROW
- Jan 2017 presentation of the final report in European Parliament
- Jan 2017 presentation of final results in UN L-EPPR
- April 2017 presentation of final results in MCWG