DEVELOPMENT OF A TEST CYCLE FOR THE INVESTIGATION OF BRAKE WEAR PARTICLES

Theodoros Grigoratos and Giorgio Martini

Sustainable Transport Unit
Institute for Energy, Transport and Climate Joint Research Centre

41st PMP IWG - 13 October 2016
\checkmark Introduction

- Background
- Current Status
\checkmark Brake Related Parameters
- Deceleration Rate
- Brake Phase Duration
- Initial Vehicle Speed
- Final Vehicle Speed
- Other Parameters
\checkmark Conclusions

INTRODUCTION - BACKGROUND

\checkmark Different driving conditions in experimental investigation of BW emissions is one important reason for different results and conclusions
\checkmark The PMP introduced a WI with the aim of defining normal driving conditions in order to provide guidance for the harmonization of future BW studies
\checkmark Parameters relevant for BW such as speed, deceleration, number and duration of braking events were calculated from the WLTP database
\checkmark The final report became available in March 2016 and can be found at the dedicated PMP webpage
https: / /www2.unece.org/wiki/pages/viewpage.action?pageId=2523173

INTRODUCTION - CURRENT STATUS

\checkmark The new ToR (June 2016) include the selection (or development) of a test cycle appropriate for the investigation of Brake Wear Particles
\checkmark The steps defined by the PMP group during the last meeting were:

- WLTP Database Analysis (Concluded)
- Comparison with Existing Industrial Cycles (On-Going)
- Development of a first version of the Braking Cycle (To be bone)
- Testing and Validation of the New Cycle (To be bone)
\checkmark Real world data provided by industrial partners have been processed with the aim of being compared to those of the WLTP database

BRAKE RELATED PARAMETERS

\checkmark Deceleration Rate

- WLTP Database
- Industrial Cycles

○
Comparison
\checkmark Brake Phase Duration
\checkmark Initial Vehicle Speed
\checkmark Final Vehicle Speed
\checkmark Other Parameters

DECELERATION RATE - WLTP DATABASE

Region	Road Type	Deceleration Rate $\left[\mathrm{m} / \mathrm{s}^{2}\right]$
Europe Median $\mathbf{(5 0 \%)}$	Urban	0.6
	Rural	0.5

Region	Road Type	Deceleration Rate $\left[\mathrm{m} / \mathrm{s}^{2}\right]$
Europe	Urban	1.7
Extreme (95%)	Rural	1.7
	Motorway	1.2

Median and extreme deceleration rates for different road categories in Europe
\checkmark A median deceleration rate of $0.6 \mathrm{~m} / \mathrm{s}^{2}$ is found in European urban areas probably also due to many events occurring within traffic jams
\checkmark Lower rates are found in rural areas and motorways
\checkmark Deceleration rates $>1.7 \mathrm{~m} / \mathrm{s}^{2}$ can be considered as extreme in all European areas. Generally more "soft" braking in motorways

European
Commission
DECELERATION RATE - WLTP DATABASE

Deceleration distributions for different road categories in Europe

European
Commission
DECELERATION RATE - INDUSTRIAL CYCLES

Cycle	Deceleration Rate $\left[\mathrm{m} / \mathrm{s}^{2}\right]$
Los Angeles City Traffic	0.9
 Suburban	0.9
Taxi Villa Paris	1.4
Mojacar	$1.3-1.9$
WLTP Europe Urban	0.6

Cycle	Deceleration Rate $\left[\mathrm{m} / \mathrm{s}^{2}\right]$
Los Angeles City Traffic	1.8
 Suburban	1.7
Taxi Villa Paris	2.4
Mojacar	2.9
WLTP Europe Urban	1.7

Median and extreme deceleration rates for different cycles
\checkmark LACT and CCS showed median deceleration rates closer to the WLTP data compared to TVP and Mojacar
\checkmark Similarly to real world deceleration rates higher than $1.7 \mathrm{~m} / \mathrm{s}^{\mathbf{2}}$ can be considered as extreme also in case of LACT and CCS

European
Commission
DECELERATION RATE - INDUSTRIAL CYCLES

Deceleration rate distributions for different industrial cycles

European
Commission

DECELERATION RATE - COMPARISON

Distribution of deceleration rates normalized for the same amount of total brake events

BRAKE RELATED PARAMETERS

\checkmark Deceleration Rate
\checkmark Brake Phase Duration

- WLTP Database
- Industrial Cycles
- Comparison
\checkmark Initial Vehicle Speed
\checkmark Final Vehicle Speed
\checkmark Other Parameters

BRAKE PHASE DURATION - WLTP DATABASE

Region	Road Type	Brake Phase Duration $[s]$
Europe Median (50\%)	Urban	3.3
	Rural	3.4

Region	Road Type	Brake Phase Duration $[s]$
Europe	Urban	$\mathbf{9 . 0}$
Extreme	Rural	$\mathbf{1 0 . 2}$
(95%)	Motorway	$\mathbf{1 0 . 3}$

Median and extreme brake phase duration distributions for different road categories in Europe
\checkmark Median brake phase duration in European urban and rural areas is approximately 3.5 s
\checkmark Slightly shorter brake phase duration is found in motorways
\checkmark Brake phase duration longer than 9.0 s is considered extreme in urban areas while for rural areas and motorways the value is $\mathbf{1 0 . 0}$ s

Commission

BRAKE PHASE DURATION - WLTP DATABASE

Brake phase duration distributions for different road categories in Europe

BRAKE PHASE DURATION - INDUSTRIAL CYCLES

Cycle	Brake Phase Duration [s]
Los Angeles City Traffic	3.9
 Suburban	3.9
Taxi Villa Paris	$\mathbf{4 . 0}$
Mojacar	$\mathbf{2 . 5}$
WLTP Europe Urban	3.3

Cycle	Brake Phase Duration [s]
Los Angeles City Traffic	12.5
 Suburban	11.5
Taxi Villa Paris	10.0
Mojacar	$\mathbf{7 . 0}$
WLTP Europe Urban	9.0

Median and extreme brake phase duration for different cycles
\checkmark LACT, CCS and TVP showed median brake phase durations of $\sim 4.0 \mathrm{~s}$ which is relatively close to the WLTP data for European Urban areas
\checkmark Brake Phase Durations longer than 10 s can be considered as extreme in almost all cases

BRAKE PHASE DURATION - INDUSTRIAL CYCLES

Brake Phase duration distributions for different industrial cycles

BRAKE PHASE DURATION - COMPARISON

Distribution of brake phase duration normalized for the same amount of total brake events

BRAKE RELATED PARAMETERS

\checkmark Deceleration Rate
\checkmark Brake Phase Duration
\checkmark Initial Vehicle Speed
\checkmark Final Vehicle Speed

- WLTP Database
- Industrial Cycles
\circ
Comparison
\checkmark Other Parameters

VEHICLE SPEED - WLTP DATABASE

Region	Road Type	Vehicle Speed $[\mathrm{km} / \mathrm{h}]$
Europe Median (50\%)	Urban	28.3
	Rural	64.7

Region	Road Type	Vehicle Speed $[\mathrm{km} / \mathrm{h}]$
Europe	Urban	60.2
Extreme (95%)	Rural	113.7
	Motorway	137.9

Median and extreme average vehicle speed distributions for different road categories in Europe
\checkmark Median average vehicle speed in European urban areas is $\mathbf{2 8} \mathbf{~ k m} / \mathrm{h}$. Speeds higher than 60 km/h are considered extreme
\checkmark Median average vehicle speed in European rural areas is 65 km/h. Speeds higher than 114 km/h are considered extreme. The values for motorways are 115 km/h and 138 km/h, respectively

VEHICLE SPEED - INDUSTRIAL CYCLES

Cycle	Initial $[\mathrm{km} / \mathrm{h}]$	Final $[\mathrm{km} / \mathrm{h}]$
Los Angeles City Traffic	42	7
 Suburban	32	7
Taxi Villa Paris	44	12
Mojacar	53	33
WLTP Europe Urban	$>28^{*}$	$<28^{*}$

Cycle	Initial $[\mathrm{km} / \mathrm{h}]$	Final $[\mathrm{km} / \mathrm{h}]$
Los Angeles City Traffic	61	52
 Suburban	66	49
Taxi Villa Paris	74	54
Mojacar	95	81
WLTP Europe Urban	$>62 *$	$<62 *$

Median (50\%) and extreme (95\%) initial and final vehicle speed for different cycles
\checkmark Initial brake speeds $>65 \mathrm{~km} / \mathrm{h}$ are considered extreme for both LACT and CCS in agreement with the extreme WLTP average speed
\checkmark LACT and CCS have a relatively higher amount of full stop brake events explaining thus the low final braking speed

European
Commission

INITIAL VEHICLE SPEED - COMPARISON

European
Commission

FINAL VEHICLE SPEED - COMPARISON

Distribution of final vehicle speed normalized for the same amount of total brake events

European
Commission

BRAKE RELATED PARAMETERS

\checkmark Deceleration Rate
\checkmark Brake Phase Duration
\checkmark Initial Vehicle Speed
\checkmark Final Vehicle Speed
\checkmark Other Parameters
Number of events and full stop braking

- Initial Disc Temperature

NUMBER \& FULL STOP EVENTS - COMPARISON

Cycle	Average $[\# / \mathrm{km}]$	Full Stop $[\%]$
Los Angeles City Traffic	2.3	20.3
 Suburban	2.3	31.6
Taxi Villa Paris	4.6	$22.4 *$
Mojacar	1.9	13.0
WLTP - Europe Total	1.6	$15-30$
WLTP - Europe Urban	3.8	31.8

$\checkmark 2.3$ braking events per km occur over LACT and CCS, while the value for normal urban driving is higher
\checkmark CCS demonstrate similar proportion of full stop events to normal urban driving while LACT has less full stop events

Number of brake phases per km (\#) and percentage (\%) of brake phases down to a stop phase (i.e. $<1 \mathrm{~km} / \mathrm{h}$) with respect to the total number of braking events for different cycles

INITIAL DISC TEMPERATURE - COMPARISON

Cycle	Median Initial Disc Temperature $\left[{ }^{\circ} \mathrm{C}\right]$	Applications with $\mathbf{T}_{\text {ini }}>100^{\circ} \mathrm{C}$ $[\%]$
Los Angeles City Traffic	$\mathbf{8 4 . 5}$	~ 20
 Suburban	61.5	<10
Taxi Villa Paris	192.6	>90
WLTP - Europe	???	$? ? ?$

\checkmark LACT and CCS show very high percentage of brake applications below $100^{\circ} \mathrm{C}$
\checkmark TVP has a completely different temperature profile with many applications higher than $100^{\circ} \mathrm{C}$

CONCLUSIONS

\checkmark Mojacar can not be used to reproduce real world urban driving conditions due to steeper braking events (i.e. higher deceleration rates and lower duration)
\checkmark Similarly TVP exhibit significantly higher deceleration rates as well as relatively higher number of events per km
\checkmark On the other hand, CCS and LACT data could be used to reproduce real world urban driving conditions with maybe some adjustment at the deceleration rates
\checkmark LACT is already an established procedure used by most industrial parties while CCS is not yet an established procedure

Thank you very much - Stay in touch

JRC Science Hub:ec.europa.eu/jrc
(5) Twitter and Facebook:
@EU_ScienceHub

LinkedIn:
in european-commission-joint-research-centre

YouTube:
JRC Audiovisuals

(1) Vimeo:

Science@EC

