

DEVELOPMENT OF A TEST CYCLE FOR THE INVESTIGATION OF BRAKE WEAR PARTICLES

Theodoros Grigoratos and Giorgio Martini

Sustainable Transport Unit Institute for Energy, Transport and Climate Joint Research Centre

41st PMP IWG – 13 October 2016

OUTLINE

- ✓ Introduction
 - Background
 - Current Status
- ✓ Brake Related Parameters
 - **Deceleration Rate**
 - Brake Phase Duration
 - Initial Vehicle Speed
 - Final Vehicle Speed
 - Other Parameters
- ✓ Conclusions

INTRODUCTION – BACKGROUND

- ✓ Different driving conditions in experimental investigation of BW emissions is one important reason for different results and conclusions
- The PMP introduced a WI with the aim of defining normal driving conditions in order to provide guidance for the harmonization of future BW studies
- ✓ Parameters relevant for BW such as speed, deceleration, number and duration of braking events were calculated from the WLTP database
- ✓ The final report became available in March 2016 and can be found at the dedicated PMP webpage

https://www2.unece.org/wiki/pages/viewpage.action?pageId=2523173

INTRODUCTION – CURRENT STATUS

- ✓ The new ToR (June 2016) include the selection (or development) of a test cycle appropriate for the investigation of Brake Wear Particles
- \checkmark The steps defined by the PMP group during the last meeting were:
 - WLTP Database Analysis (Concluded)
 - Comparison with Existing Industrial Cycles (On-Going)
 - Development of a first version of the Braking Cycle (To be bone)
 - Testing and Validation of the New Cycle (To be bone)
- ✓ Real world data provided by industrial partners have been processed with the aim of being compared to those of the WLTP database

BRAKE RELATED PARAMETERS

- ✓ Deceleration Rate
 - WLTP Database
 - Industrial Cycles
 - **Comparison**
- ✓ Brake Phase Duration
- ✓ Initial Vehicle Speed
- ✓ Final Vehicle Speed
- ✓ Other Parameters

DECELERATION RATE – WLTP DATABASE

Region	Road Type	Deceleration Rate [m/s ²]	Region	Road Type	Deceleration Rate [m/s ²]
Europe Median (50%)	Urban	0.6	Europe	Urban	1.7
	Rural	0.5	Extreme	Rural	1.7
	Motorway	0.4	(95%)	Motorway	1.2

Median and extreme deceleration rates for different road categories in Europe

- ✓ A median deceleration rate of 0.6 m/s² is found in European urban areas probably also due to many events occurring within traffic jams
- ✓ Lower rates are found in rural areas and motorways
- ✓ Deceleration rates > 1.7 m/s² can be considered as extreme in all European areas. Generally more "soft" braking in motorways

DECELERATION RATE – WLTP DATABASE

DECELERATION RATE – INDUSTRIAL CYCLES

Cycle Deceleration Rate [m/s ²]		Cycle	Deceleration Rate [m/s ²]
Los Angeles City Traffic	0.9	Los Angeles City Traffic	1.8
Cologne City & Suburban	0.9	Cologne City & Suburban	1.7
Taxi Villa Paris	1.4	Taxi Villa Paris	2.4
Mojacar	1.3-1.9	Mojacar	2.9
WLTP Europe Urban	0.6	WLTP Europe Urban	1.7

Median and extreme deceleration rates for different cycles

- ✓ LACT and CCS showed median deceleration rates closer to the WLTP data compared to TVP and Mojacar
- ✓ Similarly to real world deceleration rates higher than 1.7 m/s² can be considered as extreme also in case of LACT and CCS

DECELERATION RATE – INDUSTRIAL CYCLES

Deceleration rate distributions for different industrial cycles

DECELERATION RATE – COMPARISON

Distribution of deceleration rates normalized for the same amount of total brake events

BRAKE RELATED PARAMETERS

- ✓ Deceleration Rate
- ✓ Brake Phase Duration
 - WLTP Database
 - Industrial Cycles
 - **Comparison**
- ✓ Initial Vehicle Speed
- ✓ Final Vehicle Speed
- ✓ Other Parameters

BRAKE PHASE DURATION – WLTP DATABASE

Region	Road Type	Brake Phase Duration [s]	Region	Road Type	Brake Phase Duration [s]
Europe Median (50%)	Urban	3.3	Europe	Urban	9.0
	Rural	3.4	Extreme	Rural	10.2
	Motorway	2.5	(95%)	Motorway	10.3

Median and extreme brake phase duration distributions for different road categories in Europe

- ✓ Median brake phase duration in European urban and rural areas is approximately 3.5 s
- ✓ Slightly shorter brake phase duration is found in motorways
- ✓ Brake phase duration longer than 9.0 s is considered extreme in urban areas while for rural areas and motorways the value is 10.0 s

BRAKE PHASE DURATION – WLTP DATABASE

BRAKE PHASE DURATION – INDUSTRIAL CYCLES

Cycle	Brake Phase Duration [s]	Cycle	Brake Phase Duration [s]
Los Angeles City Traffic	3.9	Los Angeles City Traffic	12.5
Cologne City & Suburban	3.9	Cologne City & Suburban	11.5
Taxi Villa Paris	4.0	Taxi Villa Paris	10.0
Mojacar	2.5	Mojacar	7.0
WLTP Europe Urban	3.3	WLTP Europe Urban	9.0

Median and extreme brake phase duration for different cycles

- ✓ LACT, CCS and TVP showed median brake phase durations of ~4.0 s
 which is relatively close to the WLTP data for European Urban areas
- ✓ Brake Phase Durations longer than 10 s can be considered as extreme in almost all cases

BRAKE PHASE DURATION – INDUSTRIAL CYCLES

Brake Phase duration distributions for different industrial cycles

BRAKE PHASE DURATION – COMPARISON

Distribution of brake phase duration normalized for the same amount of total brake events

BRAKE RELATED PARAMETERS

- ✓ Deceleration Rate
- ✓ Brake Phase Duration
- ✓ Initial Vehicle Speed
- ✓ Final Vehicle Speed
 - WLTP Database
 - Industrial Cycles
 - **Comparison**
- ✓ Other Parameters

VEHICLE SPEED – WLTP DATABASE

Region	Road Type	Vehicle Speed [km/h]	Region	Road Type	Vehicle Speed [km/h]
Europe Median (50%)	Urban	28.3	Europe	Urban	60.2
	Rural	64.7	Extreme	Rural	113.7
	Motorway	114.8	(95%)	Motorway	137.9

Median and extreme average vehicle speed distributions for different road categories in Europe

- ✓ Median average vehicle speed in European urban areas is 28 km/h.
 Speeds higher than 60 km/h are considered extreme
- ✓ Median average vehicle speed in European rural areas is 65 km/h.
 Speeds higher than 114 km/h are considered extreme. The values for motorways are 115 km/h and 138 km/h, respectively

VEHICLE SPEED – INDUSTRIAL CYCLES

Cycle	Initial [km/h]	Final [km/h]	Cycle	Initial [km/h]	Final [km/h]
Los Angeles City Traffic	42	7	Los Angeles City Traffic	61	52
Cologne City & Suburban	32	7	Cologne City & Suburban	66	49
Taxi Villa Paris	44	12	Taxi Villa Paris	74	54
Mojacar	53	33	Mojacar	95	81
WLTP Europe Urban	>28*	<28*	WLTP Europe Urban	>62*	<62*

Median (50%) and extreme (95%) initial and final vehicle speed for different cycles

- ✓ Initial brake speeds > 65 km/h are considered extreme for both
 LACT and CCS in agreement with the extreme WLTP average speed
- ✓ LACT and CCS have a relatively higher amount of full stop brake events explaining thus the low final braking speed

INITIAL VEHICLE SPEED – COMPARISON

Distribution of initial vehicle speed normalized for the same amount of total brake events

FINAL VEHICLE SPEED – COMPARISON

Distribution of final vehicle speed normalized for the same amount of total brake events

BRAKE RELATED PARAMETERS

- ✓ Deceleration Rate
- ✓ Brake Phase Duration
- ✓ Initial Vehicle Speed
- ✓ Final Vehicle Speed
- ✓ Other Parameters
 - Number of events and full stop braking
 - Initial Disc Temperature

NUMBER & FULL STOP EVENTS – COMPARISON

Cycle	Average [#/km]	Full Stop [%]
Los Angeles City Traffic	2.3	20.3
Cologne City & Suburban	2.3	31.6
Taxi Villa Paris	4.6	22.4*
Mojacar	1.9	13.0
WLTP – Europe Total	1.6	15-30
WLTP – Europe Urban	3.8	31.8

- 2.3 braking events per km occur over LACT and CCS, while the value for normal urban driving is higher
- ✓ CCS demonstrate similar proportion of full stop events to normal urban driving while LACT has less full stop events

Number of brake phases per km (#) and percentage (%) of brake phases down to a stop phase (i.e. < 1km/h) with respect to the total number of braking events for different cycles

INITIAL DISC TEMPERATURE – COMPARISON

Cycle	Median Initial Disc Temperature [°C]	Applications with T _{ini} >100°C [%]
Los Angeles City Traffic	84.5	~20
Cologne City & Suburban	61.5	<10
Taxi Villa Paris	192.6	>90
WLTP – Europe	???	???

- ✓ LACT and CCS show very high percentage of brake applications below 100°C
- ✓ TVP has a completely different temperature profile with many applications higher than 100°C

CONCLUSIONS

- ✓ Mojacar can not be used to reproduce real world urban driving conditions due to steeper braking events (i.e. higher deceleration rates and lower duration)
- ✓ Similarly TVP exhibit significantly higher deceleration rates as well as relatively higher number of events per km
- ✓ On the other hand, CCS and LACT data could be used to reproduce real world urban driving conditions with maybe some adjustment at the deceleration rates
- ✓ LACT is already an established procedure used by most industrial parties while CCS is not yet an established procedure

Thank you very much - Stay in touch

JRC Science Hub: ec.europa.eu/jrc

in

Twitter and Facebook: @EU_ScienceHub

LinkedIn: european-commission-joint-research-centre

