CLEPA/OICA proposal for AEBS Step 2

GRRF-AEBS/LDWS-17
Geneva, 17-18 September 2012
Summary

➢ Part 1
 o Proposal
 o Difference Cat.2 vs. Cat.3
 o Vehicle dynamics
 o Conclusions Part 1

➢ Part 2
 o General considerations on Cat.2 vehicles
 o Considerations on driver’s acceptance
 o TTC vs. Braking demand
 o Warning phase vs. Emergency braking phase
 o Which TTC for Cat.2 vehicles?
 o Conclusions Part 2

➢ Annex 1

➢ Annex 2
Proposal

<table>
<thead>
<tr>
<th>Row</th>
<th>Stationary target</th>
<th>Moving target</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Timing of warning modes</td>
<td>Speed reduction</td>
</tr>
<tr>
<td>1</td>
<td>M₃¹, N₂>8t and N₃</td>
<td>Not later than 1.4 s</td>
</tr>
<tr>
<td>2</td>
<td>N₂ ≤ 8 t² and M₂²</td>
<td>Not later than the start of the emergency braking phase</td>
</tr>
</tbody>
</table>

1. Vehicles of category M3 with hydraulic braking system are subject to the requirements of row 2
2. Vehicles with pneumatic braking systems are subject to the requirements of row 1”

3/ Values shall be specified by the vehicle manufacturer at the time of Type Approval (Annex 1, paragraph 15).

4/ Approval to the entire values specified in row 1 may apply at manufacturer’s choice
Difference
Category 2 vs. Category 3 vehicles

Category 3 characteristics

Dynamic response
- slower in terms of steering & manoeuvrability with respect to other vehicles categories.
- high centre of gravity

Driving style
- deliberate & considered (professional drivers).
- predominately used for long haul transportation on highways.
- relatively long distances between deliveries therefore higher risk of driver fatigue.

Pneumatic braking systems
- have appropriately sized energy reserves capable of delivering AEBS requirements.
- AEBS successfully engineered, developed & deployed.
- Practical knowledge & experience of AEBS in-use (beyond R&D).
Difference
Category 2 vs. Category 3 vehicles

Category 2 characteristics

Dynamically designed to be car like in terms of
- steering & manoeuvrability.
- acceleration & deceleration.
- centre of gravity
- Note: some M2/N2 vehicles are directly derived form M1/N1 vehicles.

Driving style similar to passenger cars
- overtaking, lane changes, close proximity to other vehicles/tail-gating.
- predominately driven in urban areas.
- relatively short distances between deliveries or workplace, therefore reduced risk of driver fatigue.

Hydraulic brake systems
- relies on driver to provide brake input & up to 70 daN brake pedal force to achieve full braking.
- inherent response lag time in system due to pressure build-up time.
- current braking systems do not have sufficient fluid pumping capacity or energy reserves to achieve autonomous braking at high speed/high load scenario's.
- currently no AEBS are available for M2/N2 vehicles.
- no real world data or experience gained with M2/N2 vehicles equipped with AEBS therefore, increased risk of false activation due to technical immaturity.
Vehicle dynamics

AEBS Expectation - Low Speed

- Collision avoidance by braking
- At lower speeds – braking avoidance point later than steering point
Vehicle dynamics

AEBS Expectation - Low Speed

- Collision avoidance by braking
- At lower speeds – braking avoidance point later than steering point
Vehicle dynamics

Due higher lateral dynamic performance the N2/M2 speed limit for avoidance by braking is lower. Therefore, early brake intervention to achieve high speed reductions would interfere with the driver’s ability to steer.
Conclusions Part 1

- Analysis of vehicle characteristics support the assumption that M2/N2 vehicle dynamic response is similar to that of M1/N1 vehicles.
- Future development of AEBS following initial implementation may lead to an increase in braking levels, if necessary.
General considerations concerning row 2 category vehicles

- Safety benefits of AEBS
 - No vehicles currently equipped with AEBS

- Driver & Social acceptance
 - City (see annex 1)
 - Countryside (see annex 1)
 - Agile handling

- Braking system capability
 - Mainly non professional drivers
 - Designed for one-wheel braking (ESC design)

- No experience to date
- Driving environment
 - Long braking response time

- Vehicle dynamics
- Driver’s characteristics

Part 2
Considerations on Driver acceptance & Social acceptance

Which parameter can best determine AEBS driver’s acceptance regarding:

- system nuisance
 - unnecessary warning?
 - unnecessary emergency braking?

Answer:

TTC (Time To Collision)

TTC means the value of time obtained by dividing the distance between the subject vehicle and the target by the relative speed of the subject vehicle and the target, at an instant in time.
Considerations on Driver acceptance & Social acceptance

- TTC is an effective measure for rating driver’s acceptance: Warning when TTC is too long results in unnecessary / false warnings and emergency brake activations, and may lead to lose the system credibility, possibly up to system off.

- Unnecessary emergency braking may lead to unacceptable secondary accidents
TTC vs. braking demand

- Current text of AEBS draft regulation proposes “braking demand” as the reference parameter for defining the “emergency braking phase”

- TCC is the warning phase + the emergency braking phase

- Braking demand passes 4 m/s² threshold

- This is in fact the “time to collision” if the vehicle speed remains constant

- TTC

Warning phase + Emergency braking phase
Warning phase vs. Emergency braking phase

For a given TTC, the warning phase and the emergency braking phase are inter-dependant and must be considered as a package.

Key parameter is then the TTC, which is relative to the driver’s acceptance:

- Emergency braking phase duration depends on the requested subject vehicle speed reduction
- The higher the subject vehicle speed reduction, the shorter the warning phase
Which TTC for row 2 category?

- Capability of avoidance by steering action
- Agile handling
- Frequent lane changes
- Frequent overtaking
- Frequent turning and crossing manoeuvres
- No training
- Optimistic overtaking
- Low acceptance for unnecessary warning

Vehicle dynamics

Urban and suburban use

Non professional drivers

TTC shorter for row 2 than for row 1 category

See also Annexes 1 & 2
Acceptable TTC for light vehicle drivers is shorter than that for HCV drivers.

Acceptable TTC for row 2 category will be around 2 s as a minimum requirement.

Hydraulic Braking pressure build-up response time is longer than that of air brake system.

Although there is currently a lack of data and experience, it is time to determine warning phase and emergency phase values.

Therefore, the proposed performance requirements are based on our analysis of the data available and combined technical knowledge.
Annex 1

Examples of scenarii where AEBS might be misled by the traffic (passenger car)
Scene 1
Possibility of unnecessary warning and/or unnecessary braking initiation

- Ordinary road and exit to a secondary road
- Leading vehicle decelerates to exit ordinary road.
- Following driver recognises lead vehicle’s intention and maintains own vehicle speed.
- TTC is around 1.5 second, minimum.
Scene 2
Possibility of unnecessary warning and unnecessary braking initiation

- Ordinary road and entry into sharp curve
- Road-side structures (guardrail etc.) stand just in front a vehicle when it enters the curve.
- TTC is around 1.5 second, minimum.
Scene 3
Possibility of unnecessary warning and unnecessary braking initiation

- Ordinary dual carriage way.
- Lead vehicle traveling at low speed
- Following vehicle traveling a high relative speed and overtakes after having approached very close to leading vehicle
- TTC is around 1.5 second, minimum
Scene 4
Possibility of unnecessary warning and unnecessary braking initiation

- Ordinary road
- Stationary vehicle
- Following vehicle traveling at high relative speed and overtaking after having approached very closely
- TTC is around 1.5 second, minimum.

stopped vehicle
Scene 5
Possibility of unnecessary warning and unnecessary braking initiation

- Expressway and gentle curve (The curve shows radius higher than that of ordinary road.)
- Leading vehicle traveling at low speed in the outside lane (e.g. on a congested expressway exit).
- Following vehicle traveling on the inside of the curve at high relative speed.
- TTC is around 2 seconds, minimum.
Scene 6
Possibility of unnecessary warning and unnecessary braking initiation

- Expressway exit and a branch
- Leading vehicle decelerates to exit expressway.
- Following driver recognises lead vehicle’s intention and maintains own vehicle speed.
- TTC is around 2 seconds, minimum
Annex 2

Typical steering manoeuvre times
Timing of Steering Maneuver for Collision Avoidance in Ordinary Driving; Passenger Car (stationary target)

Source: ASV report, Mar. 2005
Last point to steer