UN ECE - GRSG - IGPG
5th Meeting

Update on Taber Abrasion Test as agreed with Dr. Dümmler (MPA) and Dr. Schmitz (KRD)

2012-09-05 Dr. Frank Buckel
ISO 3537 und ISO 15082 both describing the Taber test are currently under revision

- currently **no** technical description for abrasive wheels *
- currently **two** abrasive wheel types with different abrasive particles and binder material in use **

➢ decided to qualify wheels via **reference materials**

- a glass reference alone is not sufficient to define wheels for plastic glazing ***

➢ decided to separate test procedures for glass and plastic glazing materials

To do: define a reference material for plastic glazing testing

* modified Taber wheels in contrast to former CS 10F wheels do no longer fulfill “former” technical description (surface hardness)
** CS 10F from Taber & C180 OFX from Daiwa
*** based on the results of the ISO round robin test (revealed different results on plastic using the two available wheel types and a poor reproducibility for both wheels on plastic)
Results ISO Taber Round Robin Test
from 2011 / 2012 with Taber and Daiwa Wheels

ISO round robin test:
- two different types but only one lot per type of abrasive wheels*
- ten participating test laboratories
- pre-agreed test protocol **
- two different material types ***
- numbers of cycles: 1000 (glass) 100, 500 (100+400) and 1000 (coated PC)
- using a set of three samples per condition.

<table>
<thead>
<tr>
<th>Material</th>
<th>no. of cycles</th>
<th>average \bar{x}</th>
<th>standard deviation s_x</th>
<th>repeatability standard deviation s_r</th>
<th>reproducibility standard deviation s_R</th>
<th>repeatability r</th>
<th>reproducibility R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass (Taber)</td>
<td>1000</td>
<td>0,7330</td>
<td>0,2131</td>
<td>0,0892</td>
<td>0,2252</td>
<td>0,25</td>
<td>0,63</td>
</tr>
<tr>
<td>Glass (Daiwa)</td>
<td>1000</td>
<td>0,5570</td>
<td>0,2110</td>
<td>0,0796</td>
<td>0,2207</td>
<td>0,22</td>
<td>0,62</td>
</tr>
<tr>
<td>PC (Taber)</td>
<td>100</td>
<td>1,1623</td>
<td>0,6864</td>
<td>0,2958</td>
<td>0,7277</td>
<td>0,83</td>
<td>2,04</td>
</tr>
<tr>
<td>PC * (Taber)</td>
<td>500 (100+400)</td>
<td>4,2226</td>
<td>1,4213</td>
<td>1,1449</td>
<td>1,7011</td>
<td>3,21</td>
<td>4,76</td>
</tr>
<tr>
<td>PC ** (Taber)</td>
<td>1000</td>
<td>4,1913</td>
<td>1,3638</td>
<td>1,6162</td>
<td>1,8978</td>
<td>4,53</td>
<td>5,31</td>
</tr>
<tr>
<td>PC (Daiwa)</td>
<td>100</td>
<td>0,9871</td>
<td>0,3210</td>
<td>0,2356</td>
<td>0,3742</td>
<td>0,66</td>
<td>1,05</td>
</tr>
<tr>
<td>PC (Daiwa)</td>
<td>500 (100+400)</td>
<td>3,6183</td>
<td>1,0874</td>
<td>0,4535</td>
<td>1,1488</td>
<td>1,27</td>
<td>3,22</td>
</tr>
<tr>
<td>PC (Daiwa)</td>
<td>1000</td>
<td>5,7857</td>
<td>1,6424</td>
<td>0,6772</td>
<td>1,7329</td>
<td>1,90</td>
<td>4,85</td>
</tr>
</tbody>
</table>

* and ** high delta haze results not included in the statistical analysis; including high result would change the values as follows: * repeatability 20,11 and reproducibility 21,46; ** repeatability 10,14 and reproducibility 10,88
Results ISO Taber Round Robin Test
from 2011 / 2012 with Taber and Daiwa Wheels

Summary:

glass

- both wheel types lead to similar average values, as well as repeatability and reproducibility standard deviations

coated PC

- results depend on the used wheel type, even more the “average vs. no. of cycles” function for the two wheel types is completely different *

- the repeatability and reproducibility of both wheel types is quite poor ** and the 95% confidence interval in the case of 1000 cycles covers delta haze values from almost invisible to milky

* linear for the Daiwa wheel and with a limiting value after 500 revolutions for the Taber wheel

** especially under the ideal situation that all wheels of one type came from the same production lot
Taber Abrasion Test Precision
ISO vs. IGPG Round Robin Results

<table>
<thead>
<tr>
<th>cycle no.</th>
<th>coated PC</th>
<th>requirement</th>
<th>glass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Δ haze</td>
<td>max. Δ haze</td>
<td></td>
</tr>
<tr>
<td>ISO best case with only one wheel lot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daiwa C180 OFX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0,99</td>
<td>1,74</td>
<td><4%</td>
</tr>
<tr>
<td>500</td>
<td>3,62</td>
<td>5,92</td>
<td><10%</td>
</tr>
<tr>
<td>1000</td>
<td>5,79</td>
<td>9,25</td>
<td><2%</td>
</tr>
<tr>
<td>ISO best case with only one wheel lot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taber CS 10F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1,16</td>
<td>2,62 **</td>
<td><4%</td>
</tr>
<tr>
<td>500</td>
<td>4,22</td>
<td>7,62</td>
<td><10%</td>
</tr>
<tr>
<td>1000</td>
<td>4,19</td>
<td>7,99 ***</td>
<td><2%</td>
</tr>
<tr>
<td>IGPG real case (CS 10F different lots)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>10,52</td>
<td>37,58</td>
<td><2%</td>
</tr>
</tbody>
</table>

* max. Δ haze is the upper limit of the 95% confidence interval (average Δ haze + 2 x reproducibility standard deviation)
** even at 1% haze values and only using one Taber wheel lot the test accuracy on plastic is that poor that a 2% limit is not reached reliably
*** even in the unlikely case that all Taber wheel lots are identical the difference between average and max. value for plastics is above the 2% limit, which is therefore not reachable due to test accuracy (EVEN for average values of 0%)
Abrasion Tests
Comparison of Precision of Test Methods

Reproducibility R * allows to compare the precision of different test methods directly (width of distribution independent from the average haze values)

* Definition of reproducibility R: In comparing two results for the same material, obtained by different operators using different equipment, the results should be judged as not equivalent if they differ by more than the R value for that material and condition. $R = 2.8 \times$ reproducibility standard deviation (max. Δ haze = average Δ haze + 0.7 x R)
Plastic Windscreens
Haze Values of Plastic Windscreens from KRD*

- plastic windscreens with “on-road” experience are already available (police cars in Germany)
- haze values of these used windscreens are on a low level having only “some” dependency to the mileage
- investigation of the surface deterioration leading to these haze values and comparison to abrasion tests

haze values of plastic windscreens vs. mileage

* data from IGPG-04-02
Plastic Windscreens
Comparison of Microscopic Images with Abrasion Tests

plastic windscreens from KRD (IGPG-04-02)
- mileage: **136452 km**
- haze values: 1.3-1.6% (driver field of vision) and 0.9-1.0% (front-seat passenger side)

abrasion tests on samples from KRD (same coating)
- wiper test - 1000 wipe cycles
- Taber - 1000 cycles
- car wash test
- sand drop test
Plastic Windscreens
Comparison of Microscopic Images with Abrasion Tests

plastic windscreen from KRD with a mileage of 21000 km

abrasion tests on samples from KRD (same coating)

driver field of vision
center of the screen
front-seat passenger side

wiper test - 1000 wipe cycles
Taber - 1000 cycles
car wash test
sand drop test
Glass Windscreens
Comparison of Microscopic Images with Abrasion Tests

<table>
<thead>
<tr>
<th>Laminated glass windscreen with a mileage of 105000 km</th>
</tr>
</thead>
<tbody>
<tr>
<td>driver field of vision</td>
</tr>
<tr>
<td>center of the screen</td>
</tr>
<tr>
<td>front-seat passenger side</td>
</tr>
<tr>
<td>in wiper area</td>
</tr>
<tr>
<td>outside wiper area</td>
</tr>
<tr>
<td>amplification 30x</td>
</tr>
</tbody>
</table>

Abrasion tests on glass samples

- **wiper test - 1000 wipe cycles**
- **Taber - 1000 cycles**
- **car wash test**
- **sand drop test**

amplification 30x
Windscreens
Summary of Comparison of Microscopic Images

- used plastic windscreens show depending on the location (within the wiper area or not) **scratches and some small pits**
- similar **microscopic images** are created by the car wash test respectively a wiper test and to some extend by the sand drop test
- for plastic windscreens there is **no similarity to the image created by the Taber test**

- most sever surface damage on **glass windscreens** result from **stone chipping**
Taber Abrasion Tests
Summary of Test Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Consequence</th>
<th>Implication for Plastic Glazing Approval</th>
<th>Possible Adjustment of the Test to Solve Issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Part Testing</td>
<td>can only be performed on absolutely flat 100mm x 100mm samples</td>
<td>it is not possible to test a finished plastic glazing part due to its shape (only on a reference sample)</td>
<td>the abrasion performance of a finished plastic glazing part will not be checked</td>
</tr>
<tr>
<td>Correlation to On Road Use</td>
<td>two wheels consisting of abrasive particles in a resilient binder are placed with 500g load each on a rotating sample for 1000 cycles</td>
<td>there is no similarity to real "on-road" abrasion actions</td>
<td>no correlation between tested abrasion performance and real "on-road" wear performance</td>
</tr>
<tr>
<td>Technical Description of Abrading Part</td>
<td>no technical details describing the abrasiveness of the wheels</td>
<td>intended or unintended change of the publicly unknown wheel recipe by the manufacturer can change the results</td>
<td>approval depend on pre-delivery quality inspection of the wheel manufacturer</td>
</tr>
<tr>
<td>Precision of the Test Method</td>
<td>round robin test revealed a very low precision for testing plastic samples</td>
<td>haze results for plastics will vary from almost invisible to milky based on test accuracy</td>
<td>approvals not only depend on sample performance</td>
</tr>
</tbody>
</table>

- even if ISO solves these issues it is still not possible to assess the real wear of a finished plastic part
This information and our technical advice - whether verbal, in writing or by way of trails - is based on the state of the art of our technical knowledge. The information is given without any warranty, and this also applies where proprietary rights of third parties are involved. Our advice does not release you from the obligation to verify the information currently provided - especially that contained in our safety data and technical information sheet - and to test our products as to their suitability for the intended processes and uses. The application, use and processing of our products and the products manufactured by you on the basis of our technical advice are beyond our control and, therefore, entirely your own responsibility. Our products are sold in accordance with current version of our General Conditions of Sale and Delivery.
Thank you!

Dr. Frank Buckel
PCS - Innovation
Tel.: +49 214 30 40353
frank.buckel@bayer.com